Skip to main content

The significance of the social and material environment to place attachment and quality of life: findings from a large population-based health survey



There is an international public health interest in sustainable environments that promote human wellbeing. An individual’s bond to places, understood as place attachment (PA), is an important factor for quality of life (QoL). The material environment, such as access to nature (AtN), access to amenities (AtA), or noise, and the social environment, such as social support or loneliness, has the potential to influence PA. The aim of the present study was to explore the relationship between these factors and QoL.


The study relied on data from 28,047 adults from 30 municipalities in Southern Norway obtained from the Norwegian Counties Public Health Surveys in 2019. Latent regression analyses were used to examine the relationship between the material and social environmental factors and QoL, mediated by PA.


We found a relationship between social and material environmental factors and PA. Higher AtN and AtA scores were related to an increase in PA, whereas higher perception of noise problems was related to decreased PA scores. When social environment factors were added to the model, they were even stronger predictors of PA and, in turn, QoL through mediated effects. We also found a strong positive association between PA and QoL (unstandardized β = 0.88, 95% CI = 0.87–0.90, p < 0.001). The whole model explained 83% of the variance in PA and 65% of the variance in QoL.


Taken together, the findings suggest the relevance of material and social environmental factors for PA and QoL. Therefore, research on public health and QoL should include place-sensitive variables.


In the field of social science and public health, there is increasing interest in how the social and material environment may affect human wellbeing [1,2,3]. This environmental interest is grounded in the attempt by policymakers to develop sustainable environments that promote quality of life (QoL) across all ages, which is listed as a United Nations (UN) goal and implemented by local governments, including in Norway [4].

The World Health Organization (WHO) offers a standard definition of QoL as “an individual's perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns” [5]. From a place-sensitive research view [6], the “position in life” [5] needs to be seen in an environmental context, including the social and material qualities of places where people are residing and how these matter to their lives. Therefore, the promotion of wellbeing and QoL must involve a broader focus than a solely medical view of human bodies and include the influence of the social and material environments [7,8,9].

Conceptual framework

From a place-sensitive perspective, a place refers to a particular somewhere (a geographic location) that can range in scale regarding environmental elements (community, neighbourhood, residence), has a name and a history, wherein people are situated and from which they derive meaning [6, 10, 11]. It is central that people’s experiences with places be relevant to how places influence their wellbeing. Therefore, an individual’s emotional bond to places should be assessed by themselves (e.g., if they feel (dis-)comfort concerning specific place qualities), and one should not solely rely on objective features of the environment. Places matter in various ways for an individual’s ‘position in life’ [5] in terms of QoL and need to be understood in relational ways [12].

Place attachment

Place attachment (PA) is commonly defined as a multifaceted concept that characterizes the emotional bonding between people and places [13, 14]. A broadly used concept by Scannell and Gifford [15] considers PA as consisting of person-related (individual or group level) and place-related (e.g., social and material environment) dimensions, in addition to psychological processes (e.g., feelings of affection, belongingness). Instead of understanding the social and material dimensions of place integrated in the PA construct itself, we propose that these factors should be understood as predictors of the emotional bonds people form with places. Two core indicators of the psychological processes are belongingness and feelings of security and safety [14], which draw on the inward/outward relationship of place experiences [11]. As such, the inward aspect of place is understood as belonging in terms of ‘rootedness’ [16], and feeling safe refers to the surroundings (outward aspect) in terms of ‘sense of place’ [17]. Thus, research focuses on particular places where people spend time, reside and to which they feel closely bonded [18]. Although PA can change over time, especially related to dramatic events, PA has been found to be reasonably stable [19]. PA can also be compared to interpersonal attachment, which is known to provide a perceived sense of safety [20, 21].

Material environment

Places can have healing powers regarding their material, social, spiritual, and symbolic dimensions [1]; a view that is summarized in the concept ‘therapeutic landscapes’ [22,23,24]. For example, having access to nature (AtN) can promote health and enhance QoL [25, 26]. Subsequently, happiness is typically reported to be greater in natural environments [27] or in environments with less air pollution and lower noise levels [28]. In addition to nature as a material environment, the built environment has also been found to affect health-related outcomes [29,30,31]. In many cases, noise is a result of the built environment (e.g., roads, music arenas) and has been identified as a neighbourhood factor that correlates with lower health-related QoL and reduced mental health status of the residents [32, 33]. Another matter is the type of buildings and their materials that influences people’s perceptions of QoL, such as building density, resulting for example in increasing temperature and related discomfort in large cities. The built environment also includes structures entailing amenities, such as services, meeting places, and cultural events. Access to amenities (AtA) provides opportunities for being involved in meaningful activities [34, 35] and is positively associated with well-being [36, 37].

Social environment

From a geographic perspective, social capital and social determinants of health can be embedded in a range of spatial scales [3, 38], and social integration, especially at the local level, may have a positive effect on wellbeing and health [39]. Thus, social support and social network in a neighbourhood have been found to increase QoL [40]. Conversely, social isolation and/or loneliness have negative effects on mental health, and can even decrease physical health [41,42,43], which should be an aim for prevention strategies by policies. Such influence on health is recognized in overarching measures of health, such as QoL [44].


Investigations of both physical constructions (facilities, equipment, organization) and social constructions are important contributions to understanding how places can promote or reduce health as a part of wellbeing [39]. However, very few large-scale, high-quality studies have examined PA and QoL in a latent variable framework (Structural Equation Modeling [SEM]). The main objective of the present study was to examine the relationship between material environment (AtN, AtA, noise), social environment (social support, loneliness), and PA. We also examined whether an association exists between these constructs and QoL, mediated through the PA construct.

We hypothesized that AtA and AtN are positively associated with PA, whereas noise is negatively associated, in line with previous research [14, 45, 46]. We included the predictors of PA in a stepwise/sequential manner and added social variables in the last step. When these variables were added, we expected the explanatory power of the model to increase greatly. In turn, we hypothesized that PA is positively associated with QoL.


Participants and procedures

This study was carried out in the semi-rural county of Southern Norway, which consists of 30 municipalities. Only one municipality had more than 100,000 inhabitants, 11 municipalities had 10,000–45,000 inhabitants, and 18 municipalities had less than 10,000 inhabitants. A randomly selected sample of inhabitants (N = 61,611) of these municipalities aged ≥ 18 years were invited to participate in the Norwegian Counties Public Health Surveys (NCPHS). The selection of participants was based on the Norwegian Population Registry of inhabitants, and contact information (e-mails or telephone numbers) were retrieved from the contact registry from the Agency for Public Management and eGovernment (Difi). A total of 28,047 inhabitants (45.5% response rate) completed the online questionnaire with questions related to local environment, living conditions, health, and well-being.


Participant age and sex were provided through the national population registry, and information on education level and relationship status was reported by participants. Economic capability was assessed by a 6-point ordinal item, “Think about the total income in the household: How easy or difficult is it to cope with the family’s daily expenses?” with responses ranging from very difficult to very easy.

Material environmental variables

Respondents were asked to think about their local built or natural environment within their municipality. AtN was assessed by two indicators (i.e., access to nature/leisure areas and green areas, such as parks) and AtA by three indicators (i.e., access to service, transport, and culture). Items were scored on 5-point Likert-type scale that ranged from very good to very bad. Scores were reversed and higher scores meant better access. Noise was assessed by two indicators regarding how much respondents were bothered with noise from road traffic and other sources at the place where they reside. A similar 5-point Likert-type scale was used, with responses ranging from “not bothered” to “very much bothered”. Thus, higher scores meant the respondents were more bothered by noise.

Social environmental variables

Social support. The Oslo Social Support Scale (OSSS) was used. It includes three items assessing social support. First, the question, “How many people are so close to you that you can count on them if you have great personal problems?” has response options as follows: none, 1–2, 3–5, and 5 + . Two additional items are scored on 5-point ordinal scales: “How much interest and concern do people show in what you do?” (response options: from ‘none’ to ‘a lot’), and “How easy is it to get practical help from neighbours if you should need it?” (response options: from ‘very difficult’ to’very easy’) [47]. Thus, higher scores meant higher social support.

Loneliness. Subjective feelings regarding the individual’s social situation were assessed with the three-item Loneliness Scale, a short version of the UCLA Loneliness Scale [48]. It contained questions about how often the respondent felt a lack of companionship, being left out, and being socially isolated from others with 5-point response categories ranging from ‘never’ to ‘very often’. with a higher score indicating greater loneliness.

Main outcome variables

Place attachment. Two indicators were used to assess PA, namely whether respondents felt that they belonged or felt rooted to the place where they reside and felt safe or secure in their local environment regarding this place. We chose our indicators based on the inward/outward relationship of PA described by Seamon [11]. Thus, as suggested above, we propose that the PA construct consists solely of the individual’s affective relationship with place in Scannell’s and Gifford’s [15] definition of PA. The indicators were each rated on scale of 0–10 points, with higher scores representing higher sense of belonging and higher feeling of safety. To the best of our knowledge, these two indicators have not been used previously as sole indicators of PA in a SEM analysis. The analyses provide evidences for convergent validity of the scale, i.e., whether PA is associated with other relevant factors according to hypotheses.

QoL. Subjective QoL was measured using three items retrieved from a recommended “minimum” list for measuring QoL in national public health surveys in Norway [49]. The items represented three dimensions of subjective QoL: general happiness, satisfaction with life in general, and sense of meaningfulness in life [50, 51]. The items were each rated on a scale of 0–10 points, with higher scores representing better QoL. The scale was validated in a previous publication [52].

Statistical analyses

Descriptive statistics were used to show sample characteristics. The hypotheses were tested with latent regression, i.e., the constructs used in the analyses were handled as latent variables in a SEM framework, which means that the questions were modelled as reflective indicators of their respective constructs [53]. With reflective models, causality flows from the latent construct to the observed indicator and the indicators are, in principle, interchangeable, i.e., the interpretation of the model does not change if there are few or many indicators [54]. Thus, constructs can be measured by sampling a few relevant indicators underlying the domain of the construct if one only has a sufficient number of indicators to identify the model. A latent variable analysis includes the error terms as a part of the analysis and, therefore, accounts for and adjusts for measurement error [55].

A sequential analysis strategy was used, and the first model examined the associations of the variables regarding the natural and built (material) environment (AtA, AtN, and noise) with PA and QoL. The second model included variables regarding the social environment with PA and QoL. Mplus version 8.5 and the maximum likelihood (ML) estimator was used for the analyses [56]. Results are reported with the unstandardized beta (β) and 95% confidence interval (CI) to facilitate interpretation of the associations between constructs. In addition, we reported the standardized β to compare the relative strength of the associations between constructs. The significance level was set at p < 0.05. The R2 value assessed the percentage of variation in the latent constructs explained by the model. To assess model fit, we used the root mean square error of approximation (RMSEA) and the comparative fit index (CFI); the cut-off value for a good model fit was < 0.06 for RMSEA and > 0.95 for CFI [57]. The full information maximum likelihood (FIML) was used to handle missing values, which is the default procedure in Mplus.


The mean age of participants was 47 years (SD = 16 years) and slightly more than half (53%) were females (Table 1). Approximately half of participants had a higher education level (at least a bachelor degree) and 8 in 10 lived with a spouse or partner. One in five found it difficult to cover their expenses (Table 1).

Table 1 Characteristics of the study sample (N = 28,047)

In the first step of the sequential regression strategy (Fig. 1), we found that AtN (β = 1.37, 95% CI = 1.26/1.48, p < 0.001) and AtA (β = 0.38, 95% CI = 0.33/0.43, p < 0.001) were positively associated with PA, whereas noise was negatively associated with PA (β = –1.41, 95% CI = –1.49 to –1.33, p < 0.001). The standardized β was 0.29, 0.15, and –0.35 for AtN, AtA, and noise, respectively. Thus, noise and AtN were the factors most strongly associated with PA, but in the opposite direction. PA was also positively associated with QoL (β = 0.73, 95% CI = 0.71/0.75, p < 0.001, Fig. 1). The model as a whole explained 34% of the variance in PA and 50% of the variance in QoL, and the model fit was excellent (RMSEA = 0.04 and CFI = 0.98).

Fig. 1
figure 1

Latent regression model showing associations between material environmental factors as independent variables and quality of life (QoL) mediated by place attachment (PA). The figure shows the measurement and structural model with unstandardized regression coefficients. Access to amenities (AtA), access to nature (AtN)

When social variables were added to the model, the explained variance of the latent constructs PA and QoL grew substantially to 83% and 65%, respectively. Social support was positively associated with PA (β = 1.58, 95% CI = 1.48/1.68, p < 0.001, Fig. 2), and there was a negative association between loneliness and PA (β = –0.94, 95% CI = − 0.99 to − 0.90, p < 0.001). The regression coefficients between the material environment and PA decreased when the social environment variables were added, indicating that the social environmental variables were stronger explanatory factors for PA. The standardized β values support this; standardized β was 0.43 and –0.43 for social support and loneliness, respectively, but – 0.15, 0.08, and 0.06 for noise, AtN, and AtA, respectively. The positive association between PA and QoL increased (unstandardized β = 0.88, 95% CI = 0.87/0.90, p < 0.001, Fig. 2). When considering the effects mediated from the material and social environmental variables to QoL (the PA β values x the QoL β value), the unstandardized β was − 0.49, 0.32, and 0.13 for noise, AtN, and AtA, respectively. This means, for example, that a one-point higher score for noise was associated with a 0.49 reduction in the QoL score, which is a strong negative association. The effects mediated from the social variables were even stronger, with unstandardized β of 1.40 and − 0.83 for social support and loneliness, respectively. This means, for example, that a one-point higher score on the social support scale was associated with a 1.40 higher QoL score. The fit of the model was excellent (RMSEA = 0.04 and CFI = 0.97).

Fig. 2
figure 2

Latent regression model showing associations between material environment and social factors as independent variables and quality of life (QoL) mediated by place attachment (PA). The figure shows the structural model (observed indicators of the latent constructs are not shown) with unstandardized regression coefficients. Access to amenities (AtA), access to nature (AtN), social support (SOC), loneliness (LONE)

To control for any potentially confounding effects of the sociodemographic covariates (sex, age, education, relationship, and economic capability), these variables were entered into the model (Additional file 1: Figure S3). When these parameters were added, the fit of the model decreased slightly but was still acceptable (RMSEA = 0.06, CFI = 0.91). Controlling for these covariates had little impact on the main findings reported above. According to the standardized β values (not shown in the figure), economic capability (β = 0.16, p < 0.001), age (β = 0.11, p < 0.001), and living in a relationship (β = 0.04, p < 0.001) were positively associated with PA, whereas education was negatively associated with PA (β = − 0.04, p < 0.001). Gender was not significantly related to PA.


Overall, the findings revealed an association between both social and material environmental factors and PA, which was strongly related to QoL. Higher scores in AtN and AtA were linked to an increase in PA, whereas higher scores in noise were linked to a reduction in PA. Social environmental factors were stronger predictors than material environmental factors in explaining the variation in QoL.

Environmental factors influence PA and QoL

All three material environmental factors were associated with PA and QoL in the expected directions [14, 45, 46]. AtN was positively associated with PA, confirming our hypothesis and corroborating previous studies on the concept of therapeutic landscapes, in which the bond to nature positively affected QoL [1, 25, 26]. To some extent, we were uncertain that this hypothesis would be supported. On one hand, an Australian study demonstrated that access to green environments does not improve PA [58]. On the other hand, we were aware of the semi-rural property of the present county in our study. The residential density of our setting was low and, even within urban sites, there was still easy access to nature, corresponding with the generally high proportion of 60% of all Norwegian inhabitants having access to recreational areas [59].

As hypothesized, noise from road traffic or other sources was seen as unpleasant/nuisance, similar to air pollution. In line with previous research, our findings indicate that noise can actually reduce PA and, subsequently, QoL [28]. However, we were surprised by the relative strength of the negative association between noise pollution, PA, and QoL. The general concerns raised about noise pollution in Norway since the millennium may partly explain our and others’ findings [60]. The same concern has been seen internationally, and there has been an increased awareness that noise as environmental pollution may be an important source of disease that should be addressed by public health authorities [61]. Cancelling measures as a part of road construction planning is one way to mitigate this problem, as well as constructing main roads away from densely populated areas [62]. Strangely, Félonneau [63] outlined that inhabitants who were bonded to their city experienced noise pollution as less of a problem. In light of our findings, one could speculate as to whether the relatively easy access to nature and noise-free experiences in nature made the present respondents more aware of noise as a phenomenon when they returned back to a noisy neighbourhood. This example outlines once more that planners aiming to promote wellbeing should be aware of the intersection between the built and natural environment [2].

Regarding social environmental factors, social support in the local neighbourhood was found to be a strong predictor of PA and had a positive mediated association with QoL. This finding is in line with studies showing how important social factors are for health and QoL [3, 38, 40, 44]. Our results indicate that social factors were even more potent in influencing PA and QoL than natural and built factors. Therefore, planning sustainable environments [4] should always include a focus on strengthening the ‘social’ environment, not merely the material environment. However, we emphasize the importance of integrating both social and material environments in planning and policy efforts because they interact with one another. Thus, one could intuitively think that AtA would also be relevant as a facilitator of greater social interaction in the local community [34, 35].

Being emotionally bonded to a place enhances QoL

Perhaps the most surprising of our findings was that the emotional bond between people and places, as well as the model as a whole, was able to explain the variation in QoL at such a high level (65%). Although several authors have found an association between PA and QoL, their results and message were seldom as clear and strong as in the present study [13, 18, 39, 64]. One step up on our 0–10 point scaled PA construct resulted in a 0.88-point increase in QoL, which is a high increase on such a scale. Thus, our findings contribute substantially to the understanding that emotional bonding between people and places is important for people to feel well in life [5].

Methodological considerations

Among the strengths of this study is its large sample size, with a broad age range, drawn randomly from a general population, and the strong statistical power of our SEM analysis. With latent variable analysis, we are able to assess the strength of relations between latent variables representing constructs, rather than between the measures of the constructs and the analysis controls for the biasing effects of measurement error [65]. The data are based on self-reports, and several of the questions rely on subjective perception (e.g., how much respondents were bothered by noise), rather than objective measures (noise measured in decibels). This subjective approach is based on participant experience, which is closely connected to a similar approach to QoL based on the WHO’s definition highlighting that QoL is about an individual's perception of their position in life [5]. The measure of PA was constructive for our analyses and would be valuable to include in future public health studies. Future surveys should include questions about residential mobility, which was not included here. Other research have described sociodemographic factors as being important for PA, with some inconsistent findings within communities with higher residential segregation and social inequality [66]. Importantly, our main findings were not altered by adding sociodemographic variables to our model. A possible reason for this low influence may be that the communities involved with the health survey are characterized by a high degree of welfare and low degree of social inequality [67].


Our study explained a significant association between social and material environmental factors and QoL, mediated through PA. Social environmental factors social support and loneliness explained more of the variation in PA/QoL than material (built) environmental factors AtN, AtA, and noise. Despite the brevity of our basic indicators for PA and QoL, our model showed its usefulness for public health studies by generating insights that might help policy makers in planning sustainable environments that promote QoL.

Availability of data and materials

The Controller for this public health survey (NIPH) will deposit the data in a publicly available data repository: For more information, contact the first author.



Access to amenities


Access to nature


Comparative fit index


Full information maximum likelihood


Maximum likelihood


Norwegian Counties Public Health Surveys


Oslo Social Support Scale


Place attachment


Quality of life


Root mean square error of approximation


Structural equation modeling


United Nations


World Health Organization


  1. Bell SL, Foley R, Houghton F, Maddrell A, Williams AM. From therapeutic landscapes to healthy spaces, places and practices: a scoping review. Soc Sci Med. 2018;196:123–30.

    Article  PubMed  Google Scholar 

  2. Bird EL, Ige JO, Pilkington P, Pinto A, Petrokofsky C, Burgess-Allen J. Built and natural environment planning principles for promoting health: an umbrella review. BMC Public Health. 2018;18:930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kawachi I, Berkman LF, editors. Neighborhoods and health. 1st ed. Oxford; New York: Oxford University Press; 2003.

    Google Scholar 

  4. UN. The Sustainable Development Goals. United Nations Sustainable Development. 2020.

  5. WHOQOL. The World Health Organization quality of life assessment (WHOQOL): Position paper from the World Health Organization. Soc Sci Med. 1995;41:1403–9.

    Article  Google Scholar 

  6. Gieryn TF. A space for place in sociology. Ann Rev Sociol. 2000;26:463–96.

    Article  Google Scholar 

  7. Atkinson SJ, Fuller S, Painter J (Eds.) Wellbeing and place. 2012.

  8. Kearns RA, Andrews G. Geographies of wellbeing. In: Smith S, Pain R, Marston S, Jones JPI, editors. The SAGE handbook of social geographies. London: Sage Publications London; 2010. p. 309–28.

    Google Scholar 

  9. Kearns RA, Joseph AE. Space in its place: developing the link in medical geography. Soc Sci Med. 1993;37:711–7.

    Article  PubMed  CAS  Google Scholar 

  10. Casey ES. The fate of place: a philosophical history. Berkeley, Calif: University of California Press; 1997.

    Google Scholar 

  11. Seamon D. Place attachment and phenomenology: the dynamic complexity of place. In: Manzo LC, Devine-Wright P (Eds.). Place attachment: advances in theory, methods and applications. Milton: Taylor and Francis, Taylor & Francis Group, Routledge; 2020. p. 29–44.

  12. Cummins S, Curtis S, Diez-Roux AV, Macintyre S. Understanding and representing ‘place’ in health research: a relational approach. Soc Sci Med. 2007;65:1825–38.

    Article  PubMed  Google Scholar 

  13. Lewicka M. Place attachment: How far have we come in the last 40 years? J Environ Psychol. 2011;31:207–30.

    Article  Google Scholar 

  14. Scannell L, Gifford R. The experienced psychological benefits of place attachment. J Environ Psychol. 2017;51:256–69.

    Article  Google Scholar 

  15. Scannell L, Gifford R. Defining place attachment: a tripartite organizing framework. J Environ Psychol. 2010;30:1–10.

    Article  Google Scholar 

  16. Tuan Y-F. Rootedness versus sense of place. Landscape. 1980;24:3–8.

    Google Scholar 

  17. Relph ET. Senses of place and emerging social and environmental challenges. In: Eyles J, Williams A, editors. Sense of place health and quality of life. Routledge; 2008. p. 31–44.

    Google Scholar 

  18. Di Masso A, Williams DR, Raymond CM, Buchecker M, Degenhardt B, Devine-Wright P, et al. Between fixities and flows: navigating place attachments in an increasingly mobile world. J Environ Psychol. 2019;61:125–33.

    Article  Google Scholar 

  19. Korpela KM, Ylén M, Tyrväinen L, Silvennoinen H. Stability of self-reported favourite places and place attachment over a 10-month period. J Environ Psychol. 2009;29:95–100.

    Article  Google Scholar 

  20. Bowlby J. Attachment and Loss. New York: BasicBooks; 1982.

    Google Scholar 

  21. Scannell L, Williams E, Gifford R, Sarich C. Parallels between interpersonal and place attachment An update. In: Manzo LC, Devine-Wright P (Eds). Place Attachment: Advances in Theory, Methods and Applications. Milton: Taylor and Francis, Taylor & Francis Group, Routledge; 2020. p. 45–60.

  22. Gesler WM. Healing places. Rowman & Littlefield; 2003.

    Google Scholar 

  23. Gesler WM. Therapeutic landscapes: medical issues in light of the new cultural geography. Soc Sci Med. 1992;34:735–46.

    Article  PubMed  CAS  Google Scholar 

  24. Williams A. Therapeutic landscapes. Routledge; 2017.

    Book  Google Scholar 

  25. Bell SL, Phoenix C, Lovell R, Wheeler BW. Green space, health and wellbeing: making space for individual agency. Health Place. 2014;30:287–92.

    Article  PubMed  Google Scholar 

  26. Foley R, Kistemann T. Blue space geographies: Enabling health in place. Health Place. 2015;35:157–65.

    Article  PubMed  Google Scholar 

  27. MacKerron G, Mourato S. Happiness is greater in natural environments. Glob Environ Chang. 2013;23:992–1000.

    Article  Google Scholar 

  28. Rehdanz K, Maddison D. Local environmental quality and life-satisfaction in Germany. Ecol Econ. 2008;64:787–97.

    Article  Google Scholar 

  29. Evans GW. The built environment and mental health. J Urban Health. 2003;80:536–55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Friesinger JG, Topor A, Bøe TD, Larsen IB. Studies regarding supported housing and the built environment for people with mental health problems: a mixed-methods literature review. Health Place. 2019;57:44–53.

    Article  PubMed  Google Scholar 

  31. Renalds A, Smith TH, Hale PJ. A systematic review of built environment and health. Fam Community Health. 2010;33:68–78.

    Article  PubMed  Google Scholar 

  32. Leslie E, Cerin E. Are perceptions of the local environment related to neighbourhood satisfaction and mental health in adults? Prev Med. 2008;47:273–8.

    Article  PubMed  Google Scholar 

  33. Parra DC, Gomez LF, Sarmiento OL, Buchner D, Brownson R, Schimd T, et al. Perceived and objective neighborhood environment attributes and health related quality of life among the elderly in Bogotá. Colomb Soc Sci Med. 2010;70:1070–6.

    Article  Google Scholar 

  34. Altschuler A, Somkin CP, Adler NE. Local services and amenities, neighborhood social capital, and health. Soc Sci Med. 2004;59:1219–29.

    Article  PubMed  Google Scholar 

  35. Cohen DA, Inagami S, Finch B. The built environment and collective efficacy. Health Place. 2008;14:198–208.

    Article  PubMed  Google Scholar 

  36. Mulligan GF, Carruthers JI. Amenities, quality of life, and regional development. In: Marans RW, Stimson RJ, editors. Investigating quality of urban life: theory, methods, and empirical research. Dordrecht: Springer, Netherlands; 2011. p. 107–33.

    Chapter  Google Scholar 

  37. Plane J, Klodawsky F. Neighbourhood amenities and health: examining the significance of a local park. Soc Sci Med. 2013;99:1–8.

    Article  PubMed  Google Scholar 

  38. Mohan J, Twigg L, Barnard S, Jones K. Social capital, geography and health: a small-area analysis for England. Soc Sci Med. 2005;60:1267–83.

    Article  PubMed  Google Scholar 

  39. Fleuret S, Atkinson S. Wellbeing, health and geography: a critical review and research agenda. NZ Geogr. 2007;63:106–18.

    Article  Google Scholar 

  40. Pearson AL, Sadler RC. Health geography’s role in understanding social capital and its influence on health. In: Crooks VA, Andrews GJ, Pearce J, editors. Routledge handbook of health geography. Routledge; 2018.

    Google Scholar 

  41. Beutel ME, Klein EM, Brähler E, Reiner I, Jünger C, Michal M, et al. Loneliness in the general population: prevalence, determinants and relations to mental health. BMC Psychiatry. 2017;17:97.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hawthorne G. Perceived social isolation in a community sample: its prevalence and correlates with aspects of peoples’ lives. Soc Psychiat Epidemiol. 2008;43:140–50.

    Article  Google Scholar 

  43. Leigh-Hunt N, Bagguley D, Bash K, Turner V, Turnbull S, Valtorta N, et al. An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health. 2017;152:157–71.

    Article  PubMed  CAS  Google Scholar 

  44. Courtin E, Knapp M. Social isolation, loneliness and health in old age: a scoping review. Health Soc Care Commun. 2017;25:799–812.

    Article  Google Scholar 

  45. Kyle G, Graefe A, Manning R, Bacon J. Effects of place attachment on users’ perceptions of social and environmental conditions in a natural setting. J Environ Psychol. 2004;24:213–25.

    Article  Google Scholar 

  46. Passchier-Vermeer W, Passchier WF. Noise exposure and public health. Environ Health Perspect. 2000;108(suppl 1):123–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kocalevent R-D, Berg L, Beutel ME, Hinz A, Zenger M, Härter M, et al. Social support in the general population: standardization of the Oslo social support scale (OSSS-3). BMC Psychology. 2018;6:31.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hughes ME, Waite LJ, Hawkley LC, Cacioppo JT. A short scale for measuring loneliness in large surveys: results from two population-based studies. Res Aging. 2004;26:655–72.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nes R, Hansen T, Barstad A. Quality of Life. Recommendations for a better way of measuring it [Livskvalitet. Anbefaling for et bedre målesystem]. Oslo: The Norwegian Directorate of Health; 2018.

  50. Phillips D. Quality of life: concept, policy and practice. London; New York: Routledge; 2006.

    Book  Google Scholar 

  51. Ryan RM, Deci EL. On happiness and human potentials: a review of research on hedonic and eudaimonic well-being. Annu Rev Psychol. 2001;52:141–66.

    Article  PubMed  CAS  Google Scholar 

  52. Vederhus J-K, Timko C, Haugland SH. Adverse childhood experiences and impact on quality of life in adulthood: development and validation of a short difficult childhood questionnaire in a large population-based health survey. Qual Life Res. 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brown TA. Confirmatory factor analysis for applied research. New York, NY, US: The Guilford Press; 2006.

    Google Scholar 

  54. Coltman T, Devinney TM, Midgley DF, Venaik S. Formative versus reflective measurement models: two applications of formative measurement. J Bus Res. 2008;61:1250–62.

    Article  Google Scholar 

  55. Kline RB. Principles and practice of structural equation modeling. 4th ed. New York: The Guilford Press; 2016.

    Google Scholar 

  56. Muthén LK, Muthén BO. Mplus Statistical Analysis with Latent Variables: User’s Guide. 8th edition. Los Angeles, CA: Muthen & Muthen; 2017.

  57. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6:1–55.

    Article  Google Scholar 

  58. Kimpton A, Wickes R, Corcoran J. Greenspace and place attachment: Do greener suburbs lead to greater residential place attachment? Urban Policy Res. 2014;32:477–97.

    Article  Google Scholar 

  59. SSB. Recreational areas and areas for recreational walking. SSB. 2020.

  60. Engelien E, Holz KE, Steinnes M. Støyplage i Norge. Oppdatert dokumentasjon av metode. Working paper. Statistisk sentralbyrå; 2018.

  61. WHO. Burden of disease from environmental noise: quantification of healthy life years lost in Europe. World Health Organization. Regional Office for Europe; 2011.

  62. WHO. Environmental noise guidelines for the European Region. World Health Organization. Regional Office for Europe; 2018.

  63. Félonneau M-L. Love and loathing of the city: Urbanophilia and urbanophobia, topological identity and perceived incivilities. J Environ Psychol. 2004;24:43–52.

    Article  Google Scholar 

  64. Eyles J, Williams A, editors. Sense of place, health and quality of life. Routledge; 2008.

    Google Scholar 

  65. Williams LJ, O’Boyle EH. Measurement models for linking latent variables and indicators: a review of human resource management research using parcels. Hum Resour Manag Rev. 2008;18:233–42.

    Google Scholar 

  66. Bailey N, Kearns A, Livingston M. Place attachment in deprived neighbourhoods: the impacts of population turnover and social mix. Hous Stud. 2012;27:208–31.

    Article  Google Scholar 

  67. Berg NG. Social and cultural geography in Norway: from welfare to difference, identity and power. Soc Cult Geogr. 2007;8:303–30.

    Article  Google Scholar 

Download references


Not applicable.


There was no external funding of this study.

Author information

Authors and Affiliations



All authors designed the study. JKV performed the analyses. All authors participated in the interpretation of the findings, drafting of the manuscript, and approved the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jan Georg Friesinger.

Ethics declarations

Ethics approval and consent to participate

The Norwegian Institute of Public Health (NIPH) is responsible for the data collection by Norwegian Counties Public Health Surveys and a Data Protection Impact Assessment was completed before data collection. The survey was also approved by the Norwegian Data Inspectorate. In addition, the overarching project for this current study was approved by the Regional Committee for Medical Research Ethics (REK; file no. 162353/2020). The data collection followed the regulations in the Personal Health Data Filing System Act, and all personal identification variables were removed before data were delivered to the researchers in this study. Data storing and processing are in compliance with applicable personal data protection regulation. The online survey began with an introductory page that included information about the study’s purpose and a consent form, which respondents had to “click” and agree to before they were directed to the questionnaire.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1

. Figure S3 Latent regression model showing associations between material environment and social factors as independent variables and quality of life (QoL) mediated by place attachment (PA). The model controls for sociodemographic variables. The figure shows the structural model (without the observed indicators of the latent variables) with unstandardized regression coefficients. Abbreviations: access to amenities (AtA), access to nature (AtN), social support (SOC), loneliness (LONE), education (Edu), relationship (Relat), economic capability (INCOME).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friesinger, J.G., Haugland, S.H. & Vederhus, JK. The significance of the social and material environment to place attachment and quality of life: findings from a large population-based health survey. Health Qual Life Outcomes 20, 135 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: