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Abstract

Background: Conventionally, models used for health state valuation data have been frequentists. Recently a
number of researchers have investigated the use of Bayesian methods in this area. The aim of this paper is to put
on the map of modelling a new approach to estimating SF-6D health state utility values using Bayesian methods.
This will help health care professionals in deriving better health state utilities of the original UK SF-6D for their
specialized applications.

Methods: The valuation study is composed of 249 SF-6D health states valued by a representative sample of the UK
population using the standard gamble technique. Throughout this paper, we present four different models,
including one simple linear regression model and three random effect models. The predictive ability of these
models is assessed by comparing predicted and observed mean SF-6D scores, R2/adjusted R2 and RMSE. All
analyses were carried out using Bayesian Markov chain Monte Carlo (MCMC) simulation methods freely available in
the specialist software WinBUGS.

Results: The random effects model with interaction model performs best under all criterions, with mean predicted
error of 0.166, R2/adjusted R2 of 0.683 and RMSE of 0.218.

Conclusions: The Bayesian models provide flexible approaches to estimate mean SF-6D utility estimates, including
characterizing the full range of uncertainty inherent in these estimates. We hope that this work will provide applied
researchers with a practical set of tools to appropriately model outcomes in cost-effectiveness analysis.
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Background
The use of the preference-based measures of health
related quality of life (HRQoL) has been burgeoning over
the past years in the field of health economics as means
to calculate the quality adjusted life years (QALYs) to
employ them in cost-effectiveness analyses (CEA) across
the different available treatments, which gained their
essentiality due to the booming power, expenses and
variety of modern medicine. The utility, defined as the
reference to a measure of HRQoL in health economics,
may be commonly captured by adopting a standardized
multi-attribute utility (MAU) questionnaire with pre-
existing utility weights derived from the general popula-
tion, and the overall term “health related utility” refers

to the measuring of consequence to a person for being
in a specific state of health.
One difficulty with constructing such a measure is the

complex nature of a ‘state of health’. Several MAU ques-
tionnaires have been developed to measure HRQOL and
one of the most widely used is the SF-36 [1]. Health is a
multidimensional thing, and the SF-36 describes a
patient’s state of health across eight dimensions by their
answers to 36 multiple-choice questions. Each question
represents a particular aspect of health, and the patient
describes how good or bad their health is by using a
discrete response scale in that dimension. Constructing
a utility measure to describe the overall quality of life for
such a complex multidimensional descriptive system
that defines millions of potential health states is a very
difficult task, and health economists have instead based
their utility measures on simpler health state descrip-
tions, including the EQ-5D [2, 3], Health Utilities Index
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(HUI) [4], HUI3 [5], 15D [6, 7], QWB [8], the Assessment
of Quality of Life (AQoL) [9], and the SF-6D [10, 11].
However, a couple of pivotal hurdles are caused by

these instruments, where the first is imposed by their
defined large number of unique health states and the
resulting need to adopt the valuation of a subset of
possible sates in order to model health state values, and
the second hurdle is induced by their complex nature
rendering their statistical modelling quite challenging.
In spite of these obstacles, Brazier et al. [11] witnessed

some success with the modelling of the SF-6D data, while
they unearthed the issues related to non-monotonicity,
implying a lower value predicted for better states than
worse states, and to the size and the methodical pattern of
prediction errors, where some values of bad health states
are over predicted while values of good health states
are under predicted. This paper presents an alterna-
tive Bayesian approach for modelling health state
preference data for handling these problems and dem-
onstrates how regression analysis can be implemented
relatively quickly and easily using Bayesian methods.
It also provides important evidence on the advantages
of this approach to modelling health state preference
data, especially in the out of sample validation. Fur-
ther, the paper shows that the Bayesian framework is
more flexible in characterizing inputs to regression
models and more comprehensive in characterizing the
uncertainty in the model outputs.
The second section of this paper provides a brief

description of the SF-6D valuation study and the
adapted data. The models used for the analysis includ-
ing assessment of model complexity and fit are also
outlined. The next section illustrates the application of
the proposed method to the analysis of SF-6D data.
The last section concludes with a discussion of the re-
sults and their implications for future use of the SF-6D
and modelling in CEA.

Methods
The SF-6D
As a generic measure of health, the SF-6D has been
derived from the original health based preference SF-36
[1], resulting in a total of six dimensions (each between
four and six levels): physical functioning, role limitations,
social functioning, pain, mental health, and vitality. To
define an SF-6D health state, the respondent has to
choose the level which best suits him/her from each di-
mension, starting with physical functioning and ending
with vitality. In order to minimize loss of descriptive
information, the SF-6D has been constructed from a
subset of 11 items selected from the initial SF-36, allow-
ing the determination of 18,000 health states [12]. Level
1 in each dimension indicates no loss of health while levels
2 to 6 refer to a certain loss of health. Hence, a health state

of 111,111 represents perfect health, while health state
645,655 is the worst health state, or the “pits”.

Study design
The basic design of the survey was that a sample of 249
health states defined by the SF-6D was valued by a rep-
resentative sample of the UK general population (n =
836). Each respondent was asked to rank, and then
value, six of these states using a variant of the standard
gamble (SG) technique.

Selection of respondents
The purpose of sampling was to ensure the sample
reflects the variability of the population in terms of char-
acteristics, such as age, socio-economic status, and level
of education. The sample was drawn using a two-stage
cluster random selection design. The primary units were
postcode sectors stratified by percentage of households.
Fifty-one postcode sectors were selected, and addresses
were randomly selected from each of these, resulting in
1445 potential interviews. More on this is available in
Brazier et al. [11].

Selection of health states
The 249 health states were selected in two ways. One
part of the sample was identified using an orthogonal
design (by applying the Orthoplan procedure of SPSS)
which generates 49 health states to estimate an additive
model. A further 200 states were selected using a strati-
fied random sampling method to ensure a balance of
mild, moderate and severe states. More on this is avail-
able in Brazier et al. [11].

Interviews
Each respondent was asked to rank and value six health
states using the McMaster ‘ping pong’ variant of the SG.
The SG technique asked the respondents to value five of
the six SF-6D health states against the perfect health
state and the “pits”. Respondents were then asked in the
sixth SG question to value ‘pits’. Depending on whether
they thought this state was better or worse than death
they would be asked to consider one of the following
choices: (i) the certain prospect of being in the “pits”
state and the uncertain prospect of full health or imme-
diate death; or (ii) the certain prospect of death and the
uncertain prospect of full health or the “pits” state [12].
The chances of the best outcome occurring is varied
until the respondent is indifferent between the certain
and uncertain prospects. The negative of the indifference
probability of the best outcome, having the effect of
bounding negative values at − 1, has been assigned to
states valued worse than death [13]. Then, the other 5
health states were chained onto the zero to one scale,
where 0 is given to states perceived equivalent to being
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dead, and 1 is given to perfect health [11]. These ad-
justed SG values form the dependent variable (y) in the
models discussed below.

Study sample
Out of the 1445 addresses contacted for the interview,
167 proved to be ineligible.1 Of these 1278 (1445–167)
usable addresses 836 respondents agreed to participate
in the face-to-face interviews (a 65% response rate).2

Respondents were found to be representative of the
national population in terms of the distribution by age
group, education and social class. Out of these 836
respondents in the face-to-face interviews, 130 were
excluded from the analysis since they failed to value the
pits state and it was therefore not possible to generate
an adjusted SG value for them, and another 9 were
excluded for not valuing two or more health states. A
further 86 respondents who gave the same valuation for
each of the five states were also excluded, leaving 611
(836–130–9-86) respondents data for analysis [10]. Each
of the 611 respondents made 6 SG valuations giving
3666 valuations. Of these, 148 were missing from 117 re-
spondents, so 3518 (3666–148) SG valuations across 249
health states were finally included in the analysis. Each
of those health states has been valued in average 15
times, with mean health state values ranging from 0.10
(health state 535,645) to 0.99 (state 111,111) and stand-
ard deviations ranging from 0.02 (111111) to 0.61
(434654). Median health state values usually exceeded
mean values, reflecting the negative skewness of the
data. Negative observations (suggesting states worse than
death) were comparatively rare (245/3518) and only 20/
3518 health states were given a value of 1.0, while 23%
of the observations lie between 0.9 and 1.0 [11].
The data set is available upon requested from Prof

John Brazier (j.e.brazier@sheffield.ac.uk), who was inves-
tigator in the original SF-6D valuation survey, at the
University of Sheffield, UK.

Modelling
As mentioned earlier, the SF-6D could describe 18,000
possible health states, and the empirical survey could
obtain valuations for a small subset. Hence, the aim of
modelling is to estimate health state utility values for all
states. We developed a series of Bayesian predictions
using four different approaches, including one simple
linear regression model and three random effect (RE)
models. In each of the four models, the utility weight
from the SF-6D is considered as our dependent variable.
Our independent variables were dummy explanatory
variables for each level above 1 from each of the six
dimensions of the SF-6D, in addition to extra dummy
variable to account for interactions between the levels of

different dimensions. We shall discuss these in more
detail when considering the models below.

Bayesian methods
Bayesian methods [14, 15] allow the incorporation of
information external to the observed data into the ana-
lysis. Such information is specified in a prior distribution
and is combined with the observed data to produce a
posterior distribution on which inferences are based.
The incorporation of informative a priori beliefs is not
a requirement because “vague” or “noninformative”
priors can be used that provide very little or no infor-
mation relative to the data. As the focus of this paper is
not on the incorporation of prior information, all prior
distributions placed on model parameters are assumed
to be “vague”.

MCMC methods
The computation of the posterior distributions for pa-
rameters in a Bayesian model are often complex. MCMC
methods [16] are computer-intensive methods that allow
one to simulate from the posterior distribution, without
having to explicitly calculate the posterior distribution.
One method, Gibbs sampling, can be used to estimate
posterior distributions by drawing sample values randomly
from the full conditional distributions of each parameter
conditional on all others and the data. Historically, sam-
pling from one conditional distribution required consider-
able amount of computer programming. Fortunately, the
necessary computation routines are now freely available in
the software package WinBUGS (https://www.mrc-bsu.ca-
m.ac.uk/software/bugs/) [17] which only requires the ac-
tual model to be specified. WinBUGS is used for all the
analyses in this paper and the relevant code is available
from the author.

Model development
Model 1. The linear regression model is defined by the
following:

Y i ¼ β0 þ β1X1i þ β2X2i þ…þ βkXki þ εi; ð1Þ

where Yi is the utility weight from the SF-6D of patient
i, the subscript i refers to the observation and so it runs
from 1 to the total number of observations, which is
3518 for this data set; Xki indicates values for the k
covariates for individual i; the βs are the regression
parameters and εi is a random error term associated
with each observation.
Note that X is a vector of dummy explanatory vari-

ables (Xδλ) for each level λ > 1 of dimension δ of the
SF-6D. For example, X32 denotes dimension δ = 3 (social
functioning), level λ = 2 (health limits social activities a
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little of the time). For any given health state, Xδλ is de-
fined as:
Xδλ = 1 if, for this state, dimension δ is at level λ.
Xδλ = 0 if, for this state, dimension δ is not at level λ.
In all, there are 25 of these terms, with level λ = 1 on

each dimension acts as the baseline for each dimension.
Model 1, which uses the OLS model in (1), assumes

that the error term εi in Eq. 1 is normally distributed
with constant variance (homoscedastic): εi ∼ N(0, σ2)
but can be relaxed to allow for non-constant variance
(heteroscedasticity). This assumption means that the
3518 observations from 611 respondents are treated as
though 3518 respondents provided them. For this model,
we assumed that all the observed SF-6D utility values
are drawn from a normal distribution, with the condi-
tional mean (μi) a function of each of the 25 levels of the
SF-6D, as seen in Table 1.
Model 2. The Random Effects (RE) model (Model 2)

acknowledges that the error term may not be independ-
ent of the respondent, and therefore separates out within
and between respondent error terms, namely:

ui þ eij ð2Þ

where ui is respondent specific variation, which is
assumed to be random across individual respondents, eij
is an error term for the jth health state valuation of
the ith individual, and this is assumed to be random
across observations. This model also assumes that the
allocation of health states to respondents is random
i.e. cov(ui, eij) = 0.
Model 3. There are strong theoretical arguments for

restricting the intercept to unity. The adjusted SG value
for each state has been estimated according to the
axioms of expected utility theory by assuming the best
health state defined by the SF-6D (i.e. state 111,111) is
to equal one and death is equal to zero. For state 111,111
to hold any other value would change the scale. Further-
more, for use in cost utility analysis it is necessary to

assume that health state 111,111 is equivalent to full
health and hence has a value of one. The best way to
ensure health state 111,111 has a value of one is to restrict
the intercept to unity [11]. Thus, we construct the third
model to align with this idea. Model 3 has the same
equation as in model 2 with the simple exclusion of the
intercept.
Model 4. A possible option, was to base our study on

the simple orthogonal design of the survey, however, we
would be effectively limiting ourselves to the main
effects. Yet, a common application in health state valu-
ation modelling is to study the interactions between the
dimensions [11, 18], which amount to 6 dimensions for
this data set. We went through the process of looking
up interactions in the SF-6D data set, and we ended up
with a hefty number of possible interactions. Addition-
ally, if they were all to be modelled, then this would
require a valuation data on a larger sample of health
states than the one we have on hands, and the possibility
of finding statistically significant interactions would be
solely dependent on the play of chance. However, other
studies have found some significant interactions in the
type of modelling of our concern [11, 18]. Accordingly,
we based the choice of interactions for our modelling
on their findings. Specifically, extreme level dummies
were created to represent the number of times a health
state contains dimensions at the extreme ends of the
scale. Most severe is defined as levels 4 to 6 for Physical
Functioning (PF), levels 3 and 4 for Role Limitations
(RL), levels 5 and 6 for Pain (PAIN), and levels 4 and 5
for the three dimensions Social Functioning (SF),
Mental Health (MH) and Vitality (VIT).
Hence, model 4 is based on the same Equation as in

model 3 with the inclusion of an additional variable,
‘most’, to account for interactions between the levels of
different dimensions, which takes the value of 1 if any
dimension in the health state is at one of the most
severe levels, and 0 otherwise. See Table 1 for more de-
tailed information about this and the rest of the models.

Table 1 Specifications of the four models (simple linear regression and RE)

Model Conditional Distribution Specification of the mean

M1- Linear regression Yi~N(μi, σ2)
εi~N(0, σ2)

μi = β0 + Parai

M2- Random effect Yij~N(μij, σ2)
ui � Nð0; σ2uÞ
eij � Nð0; σ2eÞ

μij = β0 + Paraij + ui

M3- Random effect: intercept forced to unity Yij~N(μij, σ2)
ui � Nð0; σ2uÞ
eij � Nð0; σ2eÞ

μij = Paraij + ui

M4- Random effect: intercept forced to unity and inclusion of most Yij~N(μij, σ
2)

ui � Nð0; σ2uÞ
eij � Nð0; σ2eÞ

μij = Paraij + βmostmostij + ui

Paraij = βPF2PF2ij + βPF3PF3ij + βPF4PF4ij + βPF5PF5ij + βPF6PF6ij + βRL2RL2ij + βRL3RL3ij + βRL4RL4ij + βSF2SF2ij + βSF3SF3ij + βSF4SF4ij + βSF5SF5ij + βPAIN2PAIN2ij + βPAIN3PAIN3ij
+ βPAIN4PAIN4ij + βPAIN5PAIN5ij + βPAIN6PAIN6ij + βMH2MH2ij + βMH3MH3ij + βMH4MH4ij + βMH5MH5ij + βVIT2VIT2ij + βVIT3VIT3ij + βVIT4VIT4ij + βVIT5VIT5ij
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To this end, the prior distributions for all the regres-
sion coefficients are defined to be Normal (0, 106), i.e.,
centered on 0 with a large variance so as to be relatively
noninformative. When declaring normal distributions
in WinBUGS, instead of defining variances, precisions
(the reciprocal of the variance) are specified (to make
the specification of priors more straightforward); hence,
τ = 1/σ2. Because τ is the inverse of a variance param-
eter (which cannot go negative), a different prior is re-
quired; the common choice of Gamma (0.001, 0.001) is
used, with the intention of being minimally informative.
That is, prior distributions were specified as follows:

β0;…βk∼N 0; 106
� �

; σ2∼InverseGamma 0:001; 0:001ð Þ

See [19] for further discussion regarding choice of
noninformative prior distributions.

Model estimation
After conducting some initial runs to test the data, and
based on the Gelman and Rubin diagnostic for assess-
ment [20], we decided on the need to have some initial
runs of 1000 iterations as “burn in” in order to reach
convergence, noting that these runs were excluded from
the final results [16]. First, we formed two parallel chains
from broadly spread initial values, and then we moni-
tored the variance of the ratio of the within-chain to
between-chain which reached convergence at about one.
Following that, a further 10,000 iterations were run for
the purposes of predictions and parameters estimation.
Albeit, the figures obtained depend on the degree of the
movement smoothness of the sampler around the sam-
ple space, hence, they are not constant throughout all
applications.

Model reliability and validation
The performance of all models was compared by calcu-
lating the proportion of variance they explained in the
sample, using the unadjusted R2 statistic, where [21, 22]

R2 ¼ 1−Σi yi − ŷið Þ2=Σi yi − yið Þ2: ð3Þ

Where yi is the observed SF-6D index score for a sub-
ject, yi is the mean of the observed SF-6D index scores,
and ŷi is the predicted SF-6D index score for a subject.
The predicted values are determined by applying the
derived β coefficients from each MCMC simulation
iteration to the observed SF-6D values.
In addition, we calculated the adjusted R2, which is a

modification of the R2 that adjusts for the number of
explanatory terms in the model. It is defined as

Adjusted R2 ¼ 1− 1−R2
� � � n−1ð Þ= n − p − 1ð Þ½ �� �

:

ð4Þ
where n is the sample size and p is the number of

covariates in the model. An additional metric of model
performance was the mean of the absolute prediction
error, which is defined as the absolute difference be-
tween the predicted and observed value. As the intended
purpose of our models is to predict the mean SF-6D
scores, we also compared the predicted versus observed
mean SF-6D scores in the overall data set.
The validity of candidate models according to the

quality of their point estimates of utility can be esti-
mated using root mean square error (RMSE) criterion
for the mean:

RMSE ¼ ΣT
i¼1 yi − ŷið Þ2=n� �1=2 ð5Þ

Comparison of models
All presented models have their frequentist counterfac-
tual and so the best performing Bayesian model will be
compared to its frequentist counterfactual [11]. Given
the overall aim is to predict health state valuation; the
best way to compare these models is via their predictive
ability. This includes plots of predicted to actual values,
calculations of the mean predicted error, RMSE, R2/ad-
justed R2 and plots of the standardised residuals. These
assessments are undertaken within the full estimation
sample and in an out of sample random selection of 12
states by re-estimating the models using data sets
excluding these 12 states.

Results
The four Bayesian models are compared in terms of
their coefficients with their appropriate 95%CI, and their
predictive performance. Table 2 shows the intercept and
β coefficients as well as the corresponding 95% credible
intervals for each of the SF-6D components for all of the
models. The posterior intercept for models 1 and 2 were
0.829 and 0.833 respectively, while the intercepts for
models 3 and 4 were fixed to unity. For models 2, 3, and
4, representing the RE models, all coefficients have the
expected negative sign. However, for model 1 (simple
linear regression), the vast majority of coefficients have
the expected (negative) sign. There are three positive
coefficients associated with 3 levels and distributed over
2 dimensions, those being level 3 of the dimension
physical functioning i.e. PF3, and levels 2 and 3 of the
dimension pain i.e. PAIN2 and PAIN3. Further model 4
includes the dummy variable ‘most’ which take a value
of 1 if any dimension in the health state is at the most
level. The coefficient estimates suggest a further negative
effect if any dimension is at the most severe level.
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Finally, a key important finding from Table 2 is associ-
ated with the smaller weight in absolute value obtained
for PF5 in all models, for SF3 in three models (models 2,
3, and 4) and for VIT3 in three of the four models
(models 1, 3, and 4). We consider this finding in more
detail in the discussion section.
The levels of performance of the models are summa-

rized in Table 3, by showing their appropriate R2, ad-
justed R2, mean predicted error, and RMSE. Models 2, 3
and 4 proved to be very similar by having values variat-
ing at the level of the third decimal, where they are all
responsible to explain about 68% of the variation in the
data, based on their R2 and adjusted R2, while model 1
could explain around 20% of the variation in the data.
Additionally, the mean predicted error for model 1 is
computed to be around 0.28 while those of the other 3

models are smaller with a value of 0.17. Further, based
on the RMSE, models 2, 3 and 4 performed much better
than model 1, with values of 0.22 and 0.35 respectively,
hence the error in models 2, 3 and 4 is smaller than in
model 1. Overall, model 4 was found to provide the best

Table 2 Coefficients for OLS and RE models

Model 1 Model 2 Model 3 Model 4 Model 4 (frequentist)

β 0.829 (0.771, 0.889) 0.833 (0.787, 0.878) 1 1 1

β PF2 -0.009 (-0.055, 0.037) -0.022 (-0.052, 0.008) -0.058 (-0.089, -0.027) -0.050 (-0.081,-0.020) -0.050 (-0.080,-0.020)

β PF3 0.008 (-0.037, 0.054) -0.027 (-0.057, 0.004) -0.050 (-0.081, -0.020) -0.039 (-0.070,-0.007) -0.038 (-0.069,-0.007)

β PF4 -0.034 (-0.082, 0.013) -0.065 (-0.097, -0.033) -0.087 (-0.121, -0.056) -0.069 (-0.102,-0.036) -0.069 (-0.101,-0.036)

β PF5 -0.031 (-0.077, 0.014) -0.045 (-0.075, -0.014) -0.060 (-0.092, -0.030) -0.046 (-0.078,-0.014) -0.046 (-0.077,-0.014)

β PF6 -0.114 (-0.161, -0.066) -0.136 (-0.167, -0.104) -0.160 (-0.193, -0.128) -0.146 (-0.178,-0.114) -0.145 (-0.177,-0.113)

β RL2 -0.023 (-0.060, 0.013) -0.026 (-0.052, -0.001) -0.055 (-0.079, -0.031) -0.051 (-0.075,-0.027) -0.051 (-0.074,-0.027)

β RL3 -0.035 (-0.074, 0.003) -0.054 (-0.081, -0.027) -0.075 (-0.100, -0.049) -0.058 (-0.085,-0.031) -0.058 (-0.085,-0.031)

β RL4 -0.034 (-0.074, 0.005) -0.055 (-0.083, -0.028) -0.077 (-0.103, -0.051) -0.063 (-0.090,-0.036) -0.063 (-0.090,-0.036)

β SF2 -0.015 (-0.055, 0.024) -0.033 (-0.060, -0.006) -0.065 (-0.091, -0.040) -0.053 (-0.079,-0.027) -0.054 (-0.080,-0.027)

β SF3 -0.041 (-0.082, 0.000) -0.022 (-0.050, 0.005) -0.047 (-0.074, -0.020) -0.032 (-0.059,-0.004) -0.032 (-0.059,-0.004)

β SF4 -0.047 (-0.087, -0.007) -0.041 (-0.068, -0.014) -0.065 (-0.091, -0.039) -0.043 (-0.071,-0.015) -0.044 (-0.071,-0.016)

β SF5 -0.084 (-0.127, -0.040) -0.088 (-0.117, -0.059) -0.109 (-0.138, -0.080) -0.095 (-0.125,-0.066) -0.096 (-0.125,-0.066)

β PAIN2 0.008 (-0.037, 0.054) -0.001 (-0.031, 0.029) -0.041 (-0.070, -0.013) -0.037 (-0.066,-0.009) -0.037 (-0.066,-0.009)

β PAIN3 0.004 (-0.038, 0.0487) -0.017 (-0.046, 0.012) -0.045 (-0.074, -0.016) -0.034 (-0.063,-0.005) -0.034 (-0.064,-0.005)

β PAIN4 -0.034 (-0.080, 0.010) -0.025 (-0.056, 0.004) -0.053 (-0.083, -0.022) -0.040 (-0.071,-0.010) -0.040 (-0.070,-0.009)

β PAIN5 -0.066 (-0.109, -0.021) -0.067 (-0.097, -0.037) -0.102 (-0.131, -0.073) -0.081 (-0.110,-0.051) -0.081 (-0.111,-0.050)

β PAIN6 -0.160 (-0.202, -0.118) -0.154 (-0.184, -0.126) -0.177 (-0.206, -0.149) -0.167 (-0.196,-0.139) -0.167 (-0.195,-0.138)

β MH2 -0.034 (-0.077, 0.008) -0.018 (-0.047, 0.011) -0.043 (-0.072, -0.015) -0.036 (-0.064,-0.007) -0.036 (-0.065,-0.007)

β MH3 -0.026 (-0.069, 0.016) -0.032 (-0.062, -0.002) -0.055 (-0.085, -0.025) -0.046 (-0.075,-0.015) -0.045 (-0.076,-0.015)

β MH4 -0.098 (-0.142, -0.054) -0.093 (-0.122, -0.062) -0.116 (-0.145, -0.086) -0.100 (-0.130,-0.070) -0.099 (-0.130,-0.069)

β MH5 -0.131 (-0.176, -0.087) -0.106 (-0.136, -0.075) -0.125 (-0.156, -0.095) -0.116 (-0.146,-0.085) -0.115 (-0.147,-0.084)

β VIT2 -0.044 (-0.086, -0.009) -0.005 (-0.034, 0.023) -0.038 (-0.065, -0.011) -0.031 (-0.058,-0.003) -0.032 (-0.058,-0.004)

β VIT3 -0.035 (-0.080, 0.007) -0.007 (-0.037, 0.022) -0.029 (-0.058, 0.000) -0.018 (-0.048,0.012) -0.019 (-0.048,0.012)

β VIT4 -0.033 (-0.077, 0.010) -0.010 (-0.040, 0.020) -0.038 (-0.066, -0.010) -0.021 (-0.051,0.009) -0.022 (-0.051,0.008)

β VIT5 -0.077 (-0.122, -0.0034) -0.067 (-0.098, -0.036) -0.086 (-0.115, -0.057) -0.072 (-0.103,-0.042) -0.073 (-0.103,-0.043)

β most NA NA NA -0.083 (-0.118,-0.048) -0.084 (-0.119,-0.048)

σ 0.347 (0.339, 0.355) 0.218 (0.212, 0.223) 0.219 (0.214, 0.225) 0.219 (0.214,0.225) NA

PF physical functioning, RL role limitations, SF social functioning, PAIN pain, MH mental health, VIT vitality, NA not applicable. Values given as posterior mean (95%
confidence interval). The number next to each parameter (2, 3, 4, 5, and 6) refers to the level within each dimension

Table 3 Performance of the Bayesian models

R2 Adjusted R2 Mean predicted error RMSE

Model 1 0.197 0.191 0.283 0.347

Model 2 0.679 0.677 0.168 0.219

Model 3 0.681 0.679 0.167 0.218

Model 4 0.683 0.681 0.166 0.218

Model 4 (Frequentist) 0.682 0.680 0.167 0.219

R2 proportion of the variance as explained by the model, RMSE Root Mean
Square Error
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fit to the data (with mean predicted error of 0.166, R2 of
0.683, adjusted R2 of 0.681 and RMSE of 0.218) when
compared to models 2 and 3. On that basis we proceed
the analysis with model 4 as the best performing
Bayesian model in this paper. To this end, model 4
was also found to provide a slightly better fit to the
data when compared to its frequentist counterfactual
(with mean predicted error of 0.167, R2 of 0.682, ad-
justed R2 of 0.680 and RMSE of 0.219).
The model has been tested in terms of its predictive

ability, where the predicted and actual mean values for
the 249 health states valued by the representative popu-
lation have been plotted with health states ordered by
predicted health state values.3 Figure 1a represents the
resulting predicted mean health state valuation, solid
line, alongside the actual mean health state valuations,
represented by the dotted line. Additionally, the dashed
line represents the errors obtained by the difference
between the two valuations. It is clear that the model
predicts the data quite well for all heath states. For com-
parison, Fig. 1b presents the corresponding plots for the
frequentist model (final column of Table 2). Although
the results of the frequentist model 4 are comparable to
the results of Bayesian model 4 in Fig. 1, the Bayesian
model has the advantage of providing full probability
distributions of the 249 health state utilities as a direct
output from the modeling process rather than simply
providing the mean value and/or standard deviation as is
the case with the frequentist model. It may be argued
that the frequentist model can do this, but only after
producing the distribution of the betas and then using a
Cholesky approach to derive health states distributions.
These distributions are hugely important to capture the
full range of uncertainty inherent in these utility esti-
mates -- an increasingly important input to cost effect-
iveness analyses for health technology assessment. More
about this point will be discussed later in the article.
As always, it is important to test the validity of the

Bayesian model through investigating its ability in pre-
dicting the values for states that haven’t been used in the
initial estimation. Therefore, we excluded data related to
12 health state values randomly from the initial 249
health states data set, and the Bayesian model was fitted
on the remaining 237 SF-6D health states. The results
are summarized in Table 4, showing the true sample
means for the 12 omitted health states, along with their
predicted posterior means and SDs from the Bayesian
model, and comparing them to their actual mean utility
values. It can be seen that the predicted health state util-
ity values for the 12 omitted health states generated by
the Bayesian approach turned out to be very close to the
actual mean utility for the appropriate health state with
very small differences. For instance, the predicted mean
utility value for health state 112,111 was predicted to be

0.8704 whereas the actual mean value is 0.8212, similarly
for health state 325,455, the predicted and actual mean
values were respectively 0.4612 and 0.4677. Whilst for
other states, we see that the difference between estimates
is large (e.g. for state 621,221). To better assess the pre-
dictive performance of the Bayesian model, Fig. 2a shows
a Q-Q plot of the standardized prediction errors for the
12 omitted health states. The straight line in the figure
corresponds to the theoretical N(0,1) distribution. Based
on this model, we expect to observe the quantiles of the
standardized prediction errors to lie roughly on the theor-
etical line. As can be seen, the values are at enough prox-
imity from the line to validate the model’s predictions.
The final two columns of Table 4 presents then means

and SDs predictions that were obtained from the re-
duced data but fitting the frequentist model. The predic-
tions are generally less accurate than those which were
produced from the Bayesian model. In particular, across
the 12 omitted health states, the RMSE of predication is
0.100 for the Bayesian model estimates and 0.114 for the
frequentist model. In addition, Fig. 3b shows the corre-
sponding Q–Q plot for the frequentist model. In Fig. 2b,
the points deviate substantially and systematically from
the theoretical line; therefore, the frequentist model is
not well validated by its predictive performance. In con-
trast, it is apparent from Fig. 2a that the Bayesian model
predictions are well validated. Note that the difference in
predictions is primarily because the Bayesian analysis is
able to make use of other evaluations by the same
respondents to estimate their individual random effects,
which the frequentist analysis cannot do.
Finally, a key advantage of the Bayesian method is that

it provides estimates of the uncertainty in the health
state predictions from the model. On the other end, the
frequentist model provides data on the uncertainty in
the model parameters, but they do not provide estimates
of the uncertainty in the health state predictions from
the model [23, 24]. Figure 3 shows the probability distri-
bution around the predicted utility value for each of the
12 omitted health states. From these distributions, the
mean, median, standard deviation and corresponding
95% credible intervals can be calculated. This leads to a
conclusion that the Bayesian method is more flexible in
characterizing inputs to regression models and more
comprehensive in characterizing the uncertainty in the
model outputs [23, 24].

Discussion
The aim of this paper is to put on the map of model-
ling a new approach to estimating SF-6D health state
utility values using Bayesian methods. This will help
health care professionals in deriving better health
state utilities of the original UK SF-6D for their spe-
cialized applications. After analyzing several models
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using the Bayesian approach, we found that by adopt-
ing the model including the random effect of the in-
dividual, in addition to the inclusion of the additional
parameter ‘most’ and fixing the intercept to unity, we
would be able to predict health state values that are

very close to the actual values given by the respon-
dents in their valuations with near absent over/under
estimation. This best fitted model is responsible for
explaining about 68% of the variation in the data with
very low error, RMSE of 0.21.

Fig. 1 Actual and predicted mean health states valuations for (a) the Bayesian model (model 4) and (b) the frequentist model
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An issue of note regarding the existence of incon-
sistencies between coefficients on the SF-6D levels.
Those inconsistencies that occur in more than one of
the four models reported in Table 2 are as follows:
PF4 versus PF5, SF2 versus SF3 and VIT2 versus
VIT3. PF4 versus PF5 have similar coefficients across
all models and this indicates that most respondents
did not distinguish between them. For SF2 versus SF3
and VIT2 versus VIT3 one possible explanation is
that this dimension is worded in the positive rather
than the negative and this may have caused some
confusion for respondents. We do not believe these incon-
sistencies have any serious implication for the perform-
ance of the model as whole except for a reduction in
sensitivity at the upper end for some dimensions. Of
course, a larger sample size and the valuation of additional
health states may have overcome some of these problems
[11]. Analysis by Brazier et al. [11] has also found this type
of inconsistencies.
Through employing Bayesian methods to proceed with

our works, we were able to incorporate parameter
estimation uncertainty in our results. Conventional ap-
proaches to the assessment of health state utility models;
both direct and indirect utility models, have considered
three broad factors for model assessment and selection:
how good the models are in fitting the data; the conven-
tional psychometric properties of the utility algorithms
based upon the models, and the accuracy of the predict-
ive performance of the models [23, 24]. These factors
are suitable only in the case when decision makers are
interested in the models’ expected value predictions.
However, when they are interested in decision uncer-
tainty and include research within their decision options,
the precision of the model predictions becomes a fourth
factor related to the assessment and selection of health

state utility models [23, 24]. In this context, we would
argue that Bayesian models such as those presented in
the paper are superior to the frequentist equivalents as
they are able to produce information on the predictive
performance precision as a direct output from the mod-
eling process. Hence, Model 4 performs best in this
paper as it makes maximum use of the available infor-
mation and predicts more accurately. More importantly,
it provides the information necessary to establish the
value of undertaking further research on the utility
parameters in any decision analysis it informs.
In this article we have focused on the use of linear ran-

dom effect models for predicting health states utilities.
However, other strategies showing great predictive abil-
ities compared to the model adopted in this study may
be employed. Those include generalized linear models,
Tobit models, Two-part models and survival-type
models. While the linear regression model is the most
widely adopted type of predictive models, showing great
power in the application despite their theoretical limita-
tions, the literature evidently shows that the ideal model
depends extensively on the data on hand.

Conclusion
In conclusion, this paper has proposed four alternative
random effects models for modelling and predicting
utilities. The analyses presented have demonstrated how
utility data may be straightforwardly modelled using
Bayesian methods, and model fit and complexity assessed
using R2/adjusted R2 and RMSE, which are straightfor-
ward to compute in a MCMC analysis. The Bayesian
models are able to produce probability distributions as a
direct output from the modeling process describing the
uncertainty in the expected health state values - an
increasingly important input to cost effectiveness analyses

Table 4 Out of sample predictions for 12 health states

Health
state

True
sample
mean

Bayesian Posterior Inference Frequentist Inference

Mean S.D. Difference Mean S.D. Difference

112111 0.8212 0.8704 0.0867 -0.0492 0.9442 0.1184 -0.123

133132 0.5686 0.7400 0.0884 -0.1714 0.7508 0.1096 -0.1822

223451 0.6755 0.5122 0.0892 0.1633 0.6107 0.1366 0.0648

235224 0.4687 0.6050 0.0896 -0.1363 0.6331 0.1105 -0.1644

241531 0.7534 0.6282 0.0894 0.1252 0.6743 0.0897 0.0791

325455 0.4677 0.4612 0.0883 0.0065 0.4985 0.0977 -0.0308

332411 0.7692 0.7353 0.0896 0.0339 0.7329 0.1061 0.0363

333154 0.6364 0.6013 0.0879 0.0351 0.6482 0.0890 -0.0118

421314 0.7121 0.7597 0.0898 -0.0476 0.7658 0.1057 -0.0537

423433 0.5759 0.6172 0.0878 -0.0413 0.6564 0.1141 -0.0805

545644 0.2484 0.3269 0.0872 -0.0785 0.4295 0.1268 -0.1811

621221 0.4937 0.6235 0.0889 -0.1298 0.6581 0.1020 -0.1644
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for health technology assessment. We hope that this work
will provide applied researchers with a practical set of
tools to appropriately model outcomes in CEA.

Endnotes
1As mentioned in Brazier et al. [11], these were

addresses which contained no resident household for

Fig. 2 Q-Q plot of standardised predictive errors for the 12 out of sample health states for (a) the Bayesian model (model 4) and (b) the
frequentist model
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various reasons including: insufficient address, not
traced, not yet built, derelict/demolished, business only,
empty, institution only, weekend/holiday home.

2The remaining 442 were non-responders. Their ad-
dresses were correct and their doors knocked on but
they either were not home or said they did not want to
participate.

3The graphs in Figure 1 have been plotted by ordering
states in terms of their predicted values rather than ob-
served values as presented in Brazier et al. [11]. This is
in line with regression analysis where the actual observa-
tions are represented by circular dots and the best fit or
predicted regression line is represented by the diagonal
solid line.

A B C

D E F

G H I

J K L

Fig. 3 Probability Distribution around the predicted utility value for each of the 12 omitted health states
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