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Abstract

Background: The performance of the Beta Binomial (BB) model is compared with several existing models for
mapping the EORTC QLQ-C30 (QLQ-C30) on to the EQ-5D-3L using data from lung cancer trials.

Methods: Data from 2 separate non small cell lung cancer clinical trials (TOPICAL and SOCCAR) are used to
develop and validate the BB model. Comparisons with Linear, TOBIT, Quantile, Quadratic and CLAD models are
carried out. The mean prediction error, R2, proportion predicted outside the valid range, clinical interpretation of
coefficients, model fit and estimation of Quality Adjusted Life Years (QALY) are reported and compared. Monte-Carlo
simulation is also used.

Results: The Beta-Binomial regression model performed ‘best’ among all models. For TOPICAL and SOCCAR trials,
respectively, residual mean square error (RMSE) was 0.09 and 0.11; R2 was 0.75 and 0.71; observed vs. predicted means
were 0.612 vs. 0.608 and 0.750 vs. 0.749. Mean difference in QALY’s (observed vs. predicted) were 0.051 vs. 0.053 and
0.164 vs. 0.162 for TOPICAL and SOCCAR respectively. Models tested on independent data show simulated 95%
confidence from the BB model containing the observed mean more often (77% and 59% for TOPICAL and SOCCAR
respectively) compared to the other models. All algorithms over-predict at poorer health states but the BB model
was relatively better, particularly for the SOCCAR data.

Conclusion: The BB model may offer superior predictive properties amongst mapping algorithms considered and
may be more useful when predicting EQ-5D-3L at poorer health states. We recommend the algorithm derived
from the TOPICAL data due to better predictive properties and less uncertainty.

Keywords: Mapping, Health economics, Lung cancer, Quality of life, Cross-walking, EORTC-QLQ-C30
Introduction
Mapping is a method where the interrelationship be-
tween a generic health related quality of life (HRQoL)
measure such as the EuroQol EQ-5D-3L (EQ-5D-3L)
and a condition specific HRQoL measure (e.g. EORTC
QLQ-C30) is modelled so that utilities can be predicted
(retrospectively) in studies where the generic measure
was not used. Responses from the EORTC QLQ-C30
(QLQ-C30 thereafter) cannot be used directly in an
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economic evaluation because they are not measures of
utility, although these can be obtained from external
studies or algorithms. Therefore, a key objective of
mapping is to estimate patient level utilities from which
quality adjusted life years (QALY’s) are determined
which might otherwise not be available. The EQ-5D-3L
is recommended by the national institute for health care
excellence (NICE) in the UK for use in economic evalu-
ation, in particular, cost utility analyses (CUA) [1].
Why use mapping
Mapping or “cross-walking” can be useful when patient
level utilities are not available in a clinical trial. A statistical
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model, sometimes termed as ‘mapping algorithm’ is
used to predict the EQ-5D-3L from a disease specific
measure such as the QLQ-C30. If patient level EQ-5D-
3L cannot be obtained then it becomes difficult to con-
duct a cost utility analysis with patient level data and
reliance is made on published aggregate utilities. Map-
ping may therefore be the only way to estimate patient
level utilities for a trial and can avoid the potential
biases and uncertainties associated with using published
aggregate utilities. Mapping can also offer an additional
way of addressing sensitivity of estimated utilities (and
QALYs) if there is concern about differences between
the target population and the population from which
utilities were estimated from valuation.
HRQoL outcomes from the QLQ-C30 are not based on

preferences for given health states from a payer perspec-
tive, and therefore not used in CUA. However, a health
state on the EQ-5D-3L of 12111 (for example, a score of 1
for Mobility, 2 for Self Care, 1 for Usual Activities, 1 for
Pain/Discomfort and 1 for Anxiety/Depression) can be
converted into a preference based utility value of 0.85 for
generating a QALY.
The EQ-5D-3L currently used in many clinical trials,

has 243 health states; for each state a corresponding utility
value is available [2]. In this paper we use the UK tariffs
based on the Time Trade-Off (TTO) method [3]. The raw
scores from the EQ-5D-3L are converted into an index
ranging from -0.59 to 1, where 1 denotes ‘perfect’ quality
of life, 0 for death and values below 0 as states ‘worse than
death’.
It is not uncommon to find a mapping algorithm used

to predict patient level utilities for a clinical trial in a
particular disease area (e.g. pain), although the mapping
algorithm was developed using data from quite a differ-
ent patient population [4]. Crott (2012) suggests that
different algorithms or functional forms may exist for
each cancer type [5]; similar issues have also been raised
elsewhere [6]. Therefore, it is not often clear whether
published mapping algorithms intend users to extrapo-
late to any patient population and how factors such as
timing of measurements or presence of differential treat-
ment effects influence predicted values. For example,
where algorithms have been developed using only base-
line data, it is often not immediately clear how useful
they are for predicting post baseline EQ-5D-3L; users of
algorithms are often interested in predicting differential
(post baseline) treatment effects for cost-effectiveness
purposes [7].
Although the EQ-5D-3L is a relatively short instru-

ment, it is nevertheless surprising that many studies do
not collect patient level utility data. Recently, only 16%
of studies in lung cancer collected preference based
HRQoL data [8]. In some clinical trials, patient level
utilities were not collected, although formal economic
evaluations were conducted; 25% of HTA submissions to
NICE used mapping in such situations [9]. In Australian
HTA’s, this was 24% [10]. There is no guarantee that future
trials will continue to collect utilities from EQ-5D-3L as
there is no obligation to do so. Moreover, the existence of
the EQ-5D-5L (measured on a 5 point scale) suggests that
the EQ-5D-3L may not be adequate to address concerns
about sensitivity. These are some of the reasons why
mapping may continue to play an important part in
economic evaluation of new treatments.
In some early phase trials, preference based measures

are not usually collected, but condition specific measures
such as the QLQ-C30 are collected to provide early indi-
cations of symptom control for future phase II/III trial
planning, particularly for re-imbursement. A mapping
function can be used to estimate EQ-5D-3L from (com-
bined) early trial data for planning future cost-effectiveness
argument for a phase III trial. In situations where two
identical trials are required for licensing purposes (e.g.
multiple sclerosis), a useful mapping algorithm from
one trial can be used to determine utilities in the other
trial [11]. If the two trial designs and patient popula-
tions are identical, there might be a possibility for devel-
oping a mapping algorithm in the first trial and predict
utilities for the second.
Although mapping can be useful (and sometimes ne-

cessary), it is preferable to collect EQ-5D-3L prospectively
where possible [6]. Some particular problems identified
with mapping include limited ability of models to pre-
dict utility at poorer health states (Rowen & Brazier
[12]; the assumption that there is a conceptual relation-
ship (overlap) between two measures (Round [13]) and
that the predicted value is a true measure of HRQoL
(Chuang [14]).

Previous work on mapping
Several models have been developed and published for
mapping the QLQ-C30 to predict EQ-5D-3L [15-19].
These models have been compared using measures such
as predictive power (R2), predictive mean and residual
mean squared error (RMSE). Models used for mapping
include conditional mean or median regression models
with varying degrees of success [6]. Of 119 models
examined, ordinary least squares (OLS) approaches
were the most common [6]. The authors concluded
that more complex models only rarely had an impact
on predicted values [6,20].
Response mapping approaches Gray et al [21] where

ordinal categorical responses are modelled have also
been used with limited success. With such models, how-
ever, if there are a few responses at extremes, prediction
at these extremes are likely to be imprecise, particularly
with smaller sample sizes. Hernandez et al [22] compare
linear and TOBIT models with adjusted censored models
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(which essentially modify the TOBIT) and similar models
in a mixture modelling framework (but none were applied
to cancer datasets and QLQ-C30 in particular). These
models appear to work well, but seem to need larger
sample sizes to work well. For smaller clinical trials
(such as the SOCCAR trial), these models too may have
limited ability to predict at the extremes. Basu & Manca
(2012) use a bayesian form of a beta regression (using
non informative priors) in a non-mapping context and
compared with OLS regression [23]. The authors used a
2-part version of the beta model to handle the over
dispersion of values (e.g. over dispersion of 1′s on the
EQ-5D-3L scale) [23]. Some relatively recent approaches
include more complex Bayesian networks (Quang et al
[24]) where conditional and joint probabilities of re-
sponses using Bayes theorem may compute posterior
probabilities of each EQ-5D-5L response and conse-
quently the expected utilities [24]. However, in this
model too, predictions at poor health states were
reported as inadequate, although it performed better
than other models. The predicted utilities would be
dependent on the initial (prior) probability of response
for each EQ-5D-3L domain.
Longworth (2013) suggests several alternative models

including the Beta Binomial for investigation [9]. Crott
(2012) also suggest research of more complex mapping
algorithms as well as a need for greater validation [5].
One aspect of this ‘complexity’ might include adding

several interaction and additional demographic variables,
which might improve prediction, but on the other hand
can result in an over complicated algorithm (e.g. rather
than 15 QLQ-C30 variables, one may have a model with
30 factors, including interactions to predict EQ-5D-3L).
Another way of thinking about ‘complexity’ might be a
more complicated mathematical function, but with fewer
independent variables.
One feature of almost all published algorithms, includ-

ing those used in lung cancer (using QLQ-C30) has been
the over-prediction of utilities in patients with poorer
health states. The commonly used models do not appear
to have properly addressed over-dispersion at the ex-
tremes of the distribution. The authors of several map-
ping algorithms suggest further research is needed to
address the uncertainty of algorithms in a robust way.
Some authors suggest that statistical evaluation may not
be sufficient [25] and clinical indicators are needed to
support the algorithm. For these reasons, and given that
at the current time no mapping algorithm exists for this
particular type of lung cancer group (elderly and unfit
for chemotherapy), this research is needed.

Alternatives to mapping
Other approaches to predicting or estimating utilities
from the QLQ-C30 include using valuation studies (such
TTO) [12]. This raises a question on the usefulness of
mapping the QLQ-C30 if utilities can be readily deter-
mined from published literature. However, as pointed
out earlier, differences in disease (cancer) types can yield
significant differences in predicted utilities. In our stud-
ies in non small cell lung cancer (NSCLC) patients, the
average survival time was 3 months and patients were
unfit for chemotherapy. In addition, patients from the
trial were from the UK with relatively consistent prac-
tices for palliative care (often given to these patients).
Mapping is preferred over valuation when there is an

absence of robust evidence from literature. Even when
published utility measures are available, however, care
should be taken that estimates of utility for an economic
evaluation reflect those expected in the target popula-
tion. In some cases valuation methods may focus on a
reduced set of questions. For example, Rowen et al
(2011) determine utilities associated with the QLQ-C30
in a cancer population with better prognosis and sub-
stantially longer median survival. The authors retain the
question about a “long walk” for assessing physical func-
tion. In lung cancer patients, responses about “short
walks” are likely to be just as if not more relevant [12].
The purpose of this research is not to compare utilities
from valuation based approaches with mapping algo-
rithms, but rather compare the more common mapping
algorithms.
The value of the Beta Binomial (BB) model as a useful

mapping algorithm is its flexibility and ability to model
skewed and multimodal data measured on a zero to one
interval [26]. The modelling context allows for clustering
of data (to model correlations within and between
subjects) and is shown to reported more precise and
efficient parameter estimates [26]. In situations where
responses are over inflated at extremes (ceiling effects),
it is particularly useful because one can attempt to
model extreme values rather than omitting them or
considering them as outliers. Moreover, effect sizes in
terms of odds ratios may be more meaningful to decision
makers (particularly clinicians) than absolute mean
differences.

Methods
Several mapping models applied to QLQ-C30 were iden-
tified. A useful recent review is provided by Longworth
[9]. Of the five published algorithms which mapped
QLQ-C30, four used linear models (OLS estimates) [20]
and one used a Quadratic model [12]. Lung cancer data
sets were used in two instances [18,19].

Instruments
The EQ-5D-3L is a generic HRQoL instrument which is
well documented [2]. It has 5 domains Anxiety/Depres-
sion, Mobility, Self-Care, Usual Activities and Pain/
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Discomfort measured on a 3 point scale from 1 to 3.
The UK TTO tariff was applied to the raw EQ-5D-3L
scores to convert into utilities [2]. The EORTC QLQ-
C30 is an established instrument for measuring HRQoL
in various cancers [27]. The QLQ-C30 has 15 domains,
scored on a 0 to 100 scale. The scoring consists of 5
function scales: Physical Function (PF), Role Function
(RF), Emotional Function (EF), Cognitive Function (CF)
and social functioning (SF). There are also 9 symptom
scales, Fatigue (FA), Nausea & Vomiting (NV), Pain (PA),
Dyspnoea (DY), Insomnia (IN), Appetite Loss (AL), Con-
stipation (CO), Diarrhoea (DI) and Financial Problems
(FI); there is also a global health status score (QL). For the
global health and function domains, high scores indicate
better QoL. For the symptom domains, low scores indicate
better symptoms.

Data
Data were from two national (UK) NSCLC clinical trials.
Each trial received local ethics approvals and research
was conducted in compliance with the Helsinki declar-
ation (details in references provided). The first trial
(TOPICAL) was a randomized phase III trial in 670 lung
cancer patients which compare erlotinib (n= 350) with
placebo (n= 320) [28]. Both the EQ-5D-3L and QLQ-
C30 were collected monthly from randomization (base-
line) until death. The analysis was based on using data
over the first 12 months because nearly all patients had
died by then.
The SOCCAR trial was a phase II randomized NSCLC

trial comparing sequential chemotherapy followed by
radical radiotherapy (experimental arm) versus concur-
rent chemo-radiotherapy followed by chemotherapy in
130 patients (70 in Concurrent vs. 60 in Sequential) with
inoperable stage III NSCLC and good performance sta-
tus. EQ-5D-3L and QLQ-C30 were collected monthly
from baseline for a period of at least 18 months in the
SOCCAR trial [29].

Developing and testing alternative models
Separate mapping algorithms were developed using data
from each of the TOPICAL and SOCCAR trials using
BB regression and five other models (Linear, TOBIT,
Quantile, Censored Least Absolute Deviation (CLAD), and
Quadratic regression) for comparison. The five models
selected are among the common mapping models reported
in a review of the literature on mapping (Brazier et al [6]).
Estimated utilities from each model were compared using
several criteria including: RMSE, predicted distributions,
MAE, confidence intervals, R2, residual plots, proportion
of predicted EQ-5D-3L outside the range -0.59 to 1.0,
estimated QALYs and Monte-Carlo simulation. The
performance of each model was compared using inde-
pendent data from the SOCCAR trial. In addition, each
model was fitted using data from SOCCAR then tested
with data from the TOPICAL trial.

Model specification and analysis methods
For each model, data were combined across time points
and treatment groups following methods of previously re-
ported mapping algorithms [15,19]. One reason advocated
for pooling across all time points is because more health
states can be modelled. The models compared were:

(I) Linear Mixed Effect Model
(II) TOBIT Mixed Effect Model
(III) Quadratic Mixed Effects Model following Crott [15]
(IV) Quantile Fixed Effects Model
(V) Censored Least Absolute Deviation (CLAD): Fixed

Effects Model
(VI) Mixed Effects Beta Binomial Regression Model

The linear mixed model is a regression model with
subject as a random term. The linear mixed and Quad-
ratic models, model the mean of the EQ-5D-3L utility
distribution. The quadratic model (III) of Crott (2010)
was included because it is considered as a non-linear
model with squared terms for some QLQ-C30 domain
scores. The Quadratic model has PF, EF, SF SL and DI
as squared terms, following Crott [15]. The TOBIT
models the mean ‘plus’ the remainder of the distribution
in a mixed effects context, however the slope parameter
is adjusted by the probability of censoring. The censor-
ing in the TOBIT can be from either below (censoring
EQ-5D-3L to 0) or above (censoring EQ-5D-3L to 1).
The BB models the distributions of EQ-5D-3L responses.
Models (I) - (III) are not described in detail because a
review of the common features of these and other
models have been discussed elsewhere [6].

(IV) quantile regression
In linear regression, estimation problems can exist when
a response variable such as the EQ-5D-3L is skewed,
truncated or discrete [20]. The regression line (in the
case of one independent variable) passes through the
mean values of the response (EQ-5D utilities), for given
values of the independent variable. It assumes that the
relationship between EQ-5D and QLQ-C30 will be the
same (changes by a constant slope), even if patients have
very low or very high QLQC-30 scores. QLQC-30 may
be predictive of EQ-5D, but the predictions may be
different for poor quality of life (low EQ-5D scores) com-
pared to better quality of life (high EQ-5D). Quantile
regression might therefore be useful for predicting utilities
in specific groups of patients (e.g. with worse health
states); that is it examines how the relationship between
EQ-5D and QLQC-30 changes, depending on the values
of EQ-5D, in this application.
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In quantile regression, a line would pass through the
median or a specific quantile of the response for speci-
fied values of the independent variable (QLQC-30
scores). Predictions from the Quantile regression model
for individuals subject are estimates of the (conditional)
median when τ= 0.5 in the regression equation below:

Yi ¼ Xτ � βτ þ εi

Yi are observed EQ-5D utilities for each subject, X is a
matrix of 15 QLQC-30 values including an intercept col-
umn, βτ is a vector of parameters associated with the 15
scores of the QLQ-C30 and εi is the absolute deviation
which is to be minimized, known as the least absolute
deviation (LAD) [30,31] for estimating values of βτ.The
expected median EQ-5D, when τ= 0.5 is assumed to in-
crease for increasing QLQC-30 scores. No distributional
assumptions are made about εi, whereas in linear regres-
sion, εi are assumed normally distributed with constant
variance. In practice, one might get several regression
lines, one for each quantile. The relationship might be
stronger at any one of these quantiles.
In order to predict a patient level median EQ-5D-3L

utility (Yi
*) from 3 given scores (such as PF, RF and EF),

for example, a quantile (linear) regression model when
τ= 0.5 would be:

Yi
� ¼ b0 þ b1 � PFþ b2 � RFþ b3 � EF

When the values of PF, RF and EF are all zero, Yi
* is an

estimate of the sample median.

(V) Censored Least Absolute Deviation (CLAD)
CLAD extends quantile regression with an emphasis on
the 50th percentile (when τ= 0.5). In addition, predicted
estimates of EQ-5D utilities which are either >1 or be-
tween 0 and -0.59 are restricted (censored) to 1 and 0
respectively (Powell; Khan & Powell) [32,33]. The model
is described below:

EQ−5D−3L ¼
0 −0:59 < Xβþ εi < 0
1:0 if Xβþ εi > 1:0
Xβþ εi; elsewhere

8<
:

The term Xβ refers to the predicted median EQ-5D-
3L plus some deviations, εi, which are assumed to follow
any distribution with a median of zero. The estimators
of β are unbiased and consistent though not efficient
[34]. Conditional medians are estimated at the patient
level in a similar way as in (IV) except that estimates are
restricted to lie between 0 and 1. The mean of all the
individual (conditional) medians can be used as before
for deriving QALYs. The mean is the statistic of choice
for decisions relating to health technology assessment
[35,36]. The population mean and median are approxi-
mately equal for normally distributed data.
(VI) Beta binomial regression
The BB distribution is often used in probabilistic sensi-
tivity analyses (PSA) in health economic modelling for
utility measures such as the EQ-5D-3L [37]. One reason
for use in PSA appears to be convenience of assuming a
scale from 0 to 1 for utility (although there is no EQ-
5D-3L tariff which is exactly equal to zero). In particular,
the BB regression can model responses which are
unimodal or bimodal with varying levels of skewness
[38-40] ; utilities are often reported as having skewed or
truncated distributions [20]; in addition, the BB esti-
mates the mean of the distribution whereas some other
models estimate the median. Therefore the BB approach
may be a suitable model to test for developing a map-
ping algorithm.
An important feature of the BB approach is that mean

predicted estimates of EQ-5D-3L can be estimated while
restricting the range between 0 and 1. Although re-
sponses are required to be in the (0,1) interval, the BB
can still be used in any interval (a, b) for a < b using the
transformation Y-a/b-a. For example, if the observed
EQ-5D-3L value is -0.1, then -0.1 – (-0.53)/1- (-0.53)
would give a transformed value of 0.28. However, it may
be difficult to correct for both asymmetry and heterosce-
dasticity resulting in difficult interpretations of param-
eter estimates in terms of the original response [41].
Moreover, there may also be potential difficulties in
interpreting mean QALYs. For example, a utility of -0.34
transformed to a value of 0.124 generates a different in-
terpretation of the QALY. One reasonable assumption in
the use of the BB model is that observed values <0 are
set equal to 0 because there were <0.5% of values with
EQ-5D-3L responses <0 in each data set, hence, the po-
tential for bias is likely to be small. A transformation
was therefore not used.
Using the BB can be more complicated than linear

models, depending on the need to model the variance.
Without modelling the variance (over-dispersion), mod-
elling mean response (EQ-5D-3L) as a function of the 15
QLQ-C30 variables requires using a simple logit func-
tion (because values are assumed to lie between 0 and
1), as in a logistic regression model.

Notation for beta binomial
A response variable (EQ-5D-3L) is assumed to follow a
Beta (α,β) defined by:

F yjα; βð Þ ¼ Γ αþ βð Þ=Γ αð ÞΓ βð Þf g � yα−1
� 1−yð Þβ−1 ð1Þ

The mean and variance of a y of (1) are α/(α + β) and
αβ/(α + β)2(α + β + 1), where α and β are the shape and
scale parameters, respectively. The parameters α and β
can be estimated from the observed mean and variance
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using the method of moments. For example, the values
of β from the TOPICAL and SOCCAR data are <1 for
EQ-5D responses, using the relationship:

α ¼ μ � μ � 1−μð Þð Þ=σ2� �
−1

� �

β ¼ 1−μð Þ � μ � 1−μð ÞÞ=σ2−1� ���

When μ and σ2 are population mean and variance;
sample estimates can be used as estimates for these.
The above description of the BB distribution in (1) is

not useful for regression modelling and first requires re-
parameterization (Ferrari & Cribari-Neto 2004), so that
a response can be defined along with a set of predictors
to form a regression model [42]. This is similar to simple
linear regression where the responses are normally dis-
tributed with mean μ and variance σ2. In simple linear
regression we express μ, the predicted mean in terms of
a set of predictors x1….x15 (i.e. μ= a + bx1 + bx2 + …..
b15x15 for the QLQ-C30).
If we set μ= α/α + β and ϕ = α + β in (1) then this

becomes:

fðyjμ;ϕÞ ¼ Γ ϕð Þ=Γ μϕð ÞΓ 1−μð Þϕð Þf g � yμϕ−1 � 1−yð Þ 1−μð Þϕ−1

ð2Þ
The expression in (2) is a beta distribution: y ~ Beta

(μ, ϕ) and the mean, μ is expressed as a link function (to
model the mean) in terms of some predictor variables.
Typically, the link function g(μ)=Xβ is such that g(μ)=
log(μ/1- μ). With this logit link function, the mean re-
sponse is: μ= eω/1+ eω, where ω= α + Xβ. The value of μ
is restricted to a 0 to 1 scale. In simple linear regression,
g(μ)= μ.
The BB regression form for modelling EQ-5D-3L is:

g μð Þ ¼ log μi=1−μið Þ ¼ αþ Xβ;

where the part log(μi/1- μi) are the transformed values
of the EQ-5D responses to a logit scale. One main differ-
ence with the logistic regression model is that there is
no need for responses to be dichotomous (the values μi
are continuous).
In order to compute the patient level predicted EQ-

5D-3L, the logistic function, with X as the set of inde-
pendent QLQ-C30 variables with β as the parameter
vector yields:

μi ¼ exp Xβð Þ= 1þ exp Xβð Þf g
A second model (such as a log function) could also be

used to model the dispersion in terms of a set of QLQ-
C30 variables (not necessarily all 15 variables, because
the variance might depend on some important ones).
The additional precision parameter ϕ, like the mean

parameter, μ, involves an equation which relates the vari-
ance to a set of predictors. This equation often assumes a
log function ln[h(ϕ)] (because the variance is >0). There-
fore, h(ϕ) describes the relationship between the variance
and W

i:e:h ϕð Þ ¼ exp Wδð Þ;
Since the relationship between variance may not de-

pend on all 15 variables (in the case of QLQ-C30), these
are labelled W with the corresponding parameters δ.
The addition of the second (precision) parameter, ϕ,

allows greater flexibility to model any over dispersion of
EQ-5D values [42].
Hence, two sets of equations are associated with the

QLQ-C30 variables; one through the mean EQ-5D-3L
and one through the variance. These (two) equations
provide the basis to determine estimates of the parame-
ters β.
The responses y (i.e. the EQ-5D-3L) are therefore Beta

([(g(μ), h(ϕ)], with likelihood function:

L β; δ;Y;X;Wð Þ ¼ Γ exp Wδð Þð Þ=Γ sð ÞG tð ÞYs−1 1−Yð Þt−1
ð3Þ

where,

s ¼ exp XβþWδð Þ= 1þ exp Xβð Þf g
t ¼ exp Wδð Þ= 1þ exp Xβð Þf g

If we compare the above function (3) with (1):

Fðyjα; βÞ ¼ Γ αþ βð Þ=Γ αð ÞΓ βð Þf g � yα−1 � 1−yð Þβ−1

α-1= s-1 and β-1= t-1 in (3) relates the observed EQ-5D-
3L (y values) with the QLQ-C30 predictors through both
the mean and variance.
This form of parameterization allows a powerful way

of modelling utilities not only for mapping, but in a
generalized mixed modelling context for estimates of
utilities and HRQoL which can be scaled to a 0,1 inter-
val. This approach uses a non-linear mixed modelling
approach where the general likelihood has been pro-
grammed directly using the SAS software (version 9.3)
[40]. An example SAS code is provided in Appendix I
for implementing the BB model.
One reasonable assumption we impose is that ob-

served values <0 are set equal to 0. There were <0.5% of
values with EQ-5D-3L responses <0 in each data set,
hence, the potential for bias is likely to be small. A
transformation was therefore discarded.
Although the BB regression can be very flexible, a

limitation of the model is that observations existing at
either 0 or 1 must be scaled away from these values.
That is, when there are many 0 or 1 responses, estima-
tion with a standard BB regression can become problem-
atic. Therefore, a zero-one inflated BB model was used
to account for this over-dispersion [40].
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Testing algorithms with lung cancer data
For each of the models, the predicted and observed
values were compared. Models were developed using the
larger TOPICAL data set and validated with SOCCAR.
The observed health states were ordered (from 11111 to
33333) and the mean predicted EQ-5D-3L was com-
puted for each algorithm and plotted. In addition, we
estimated the proportion of individual predicted EQ-5D-
3L responses from each model within +5% to +30% of
the observed EQ-5D-3L. Estimated utilities from each
model were compared using model statistics described
earlier.

Model checking and adequacy
In all models, adequacy of fit was considered using
residuals, tests for homoscedasticity and Aikakes Infor-
mation Criterion (AIC). The AIC was used to compare
models for the same dataset.

Simulations
Monte-Carlo simulations (10,000) from a multivariate dis-
tribution for the EQ-5D-3L and QLQ-C30 scores using
the method of Fleishman [43,44] with the observed correl-
ation structure were carried out to assess uncertainty of
predicted means from each model. The method of Fleish-
man uses higher order moments (Skewness and kurtosis)
as a way of simulating data that approximates the sam-
pling distribution. Each data set simulated contained 670
and 130 patients with 2038 and 1002 observations for
TOPICAL and SOCCAR respectively.

Addressing over prediction of EQ-5D-3L at the ‘poorer’
health states
We investigated the over prediction at ‘poorer’ health
states using a health state of 11321 (EQ-5D-3L utility
0.433) as a cut-off for ‘Poor’ and ‘Good’ health states in
TOPICAL and 22222 (EQ-5D-3L utility 0.516) in SOC-
CAR. The selected health states cut-points were chosen
because this is where the observed and predicted EQ-
5D-3L values start to diverge.

Impact on QALY estimates
For each model, patient level QALYs were generated
using model estimates of patient level utilities and multi-
plying them by observed survival times. For PSA, simula-
tion was used to estimate the mean overall survival (OS),
progression free survival (PFS) and post-progression sur-
vival. OS and PFS are important outcomes in cancer trials
often calculated from the time from treatment allocation
or randomization until death (OS) or disease progression
(PFS). The exponential model was chosen to fit the em-
pirical Kaplan-Meier curve for OS and PFS. Using the
relationship: OS= 1*Log(1-xi))/λ,where xi are randomly
generated from a uniform distribution and λ is the
observed hazard rate. In economic evaluation, the ob-
jective is to simulate survival times which approximate
the mean OS and PFS (not the median).
For each realization the mean (area under the survival

curve) OS and PFS were determined for each treatment
group. For TOPICAL, there were no censored data and
for SOCCAR, the censoring distribution was taken into
account (because patients were still alive) such that sim-
ulations resulted in PFS < OS. The pre and post pro-
gression utilities were determined from each of the
simulations described earlier. Hence a total of 10,000
mean OS, PFS, pre-progression and post-progression
utilities were generated to determine QALYs. QALYs
were estimated as weighted sums of pre-progression
and post-progression mean EQ-5D-3L for each treat-
ment group.

Results
A total of 2038 and 1002 data points with 84 and 54
health states were observed for each of TOPICAL and
SOCCAR respectively. The average (median) number of
observations per health state were 3 for TOPICAL and 2
for SOCCAR. The most frequent health state in TOP-
ICAL was 21222 (12%); For SOCCAR, the most frequent
health state was 11111 (25%) followed by 21222 (8%).
Patients in the SOCCAR trial had better performance
status (Table 1) compared to TOPICAL patients. Less
than 0.5% (3/2038 observations in TOPICAL and 1/
1002 in SOCCAR) of EQ-5D-3L observations had values
<0 (corresponding to 3 health states in TOPICAL and 2
health states in SOCCAR). The correlation between EQ-
5D utilities and each of the 15 domains ranged from
0.32 (FI) to 0.69 (PF), suggestion that mapping was pos-
sible (some overlap in terms of responses was present).
The observed mean (SD) EQ-5D-3L for TOPICAL

and SOCCAR were 0.61 (0.29) and 0.75 (0.23) respect-
ively over all post-baseline time points (Additional file 1:
Table S1). Figure 1 shows the distributions of EQ-5D-3L
confirming presence of non-normality, skewness and
multimodality. If α and β (both are shape parameters
which are used to model the distribution – for example
if α and β are the same, the distribution tends towards
symmetry) are <1, data are considered non-normal,
multimodal or skewed. The Kolgomorov-Smirnoff good-
ness of fit rejects normality (P= 0.0093) and P < 0.001 for
TOPICAL and SOCCAR respectively).

Comparison of models
The models were first tested on the same dataset used to
develop the mapping algorithm (Table 2 and Additional
file 1: Table S2, Figure 2a and 2b). All terms in the model
were retained (regardless of statistical significance); even if
some terms are not statistically significant, since they can
still be relevant [5,12,16]. The standard errors for the BB



Table 1 Summary of health states and baseline characteristics

TOPICAL (N= 670) SOCCAR (N= 130)

EQ-5D number of observations 2038 1002

Health states (range) 84 (11111, 33312) 54 (11111, 23223)

[EQ-5D Value] {number of HS <0} [1, -0.043] {3 HS < 0} [ 1, -0.028] {2 HS < 0}

Median number of observations per HS 3 2

Most Frequent HS 21222 (12%) [value = 0.62] 11111 (25%) [ value = 1]

ECOG 1-3 0-1

Median Age (years) 77 62

Disease Stage IIIb-IV IIIa-IIIb

HS: Health states.
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were smallest (Table 2). The AIC values were smallest
for the BB model and ranged from -2215 (BB) to -864
(Quantile) for TOPICAL and -1529 (BB) to -587 (Quantile).
Smaller AIC values suggest better fit (Table 2). For the
six models, the estimated R2 ranged from 0.53 (CLAD)
to 0.75 (BB); R2 was highest (TOPICAL R2= 0.75) for
Figure 1 Out of sample predictions. a) Model developed from TOPICAL
tested on SOCCAR data: Predictions by health states.
the BB model (Table 2). Estimated RMSE ranged from
0.09 (BB) to 0.18 (Quadratic, CLAD). The proportion of
predicted values of EQ-5D-3L >1 were highest for the
quantile model (3.5%), whereas for the Quadratic model
predicted values <0 were more common (5%), despite
only 0.3% of observed values <0 were set to zero for
data tested on SOCCAR data. b) Model developed from TOPICAL data



Table 2 Summary of model fit statistics

QLQ-C30 Linear Mixed TOBIT Quadratic Quantile CLAD Beta

TOPICAL SOCCAR TOPICAL SOCCAR TOPICAL SOCCAR TOPICAL SOCCAR TOPICAL SOCCAR TOPICAL SOCCAR

R2 0.63 0.64 0.65 0.63 0.64 0.62 0.66 0.62 0.55 0.53 0.75 0.71

MAE 0.14 0.14 0.13 0.10 0.16 0.129 0.13 0.09 0.14 0.71 0.10 0.13

RMSE 0.183 0.141 0.17 0.14 0.18 0.14 0.17 0.14 0.18 0.15 0.09 0.11

Predicted
mean (SE)*

0.584 (0.0047) 0.771 (0.0058) 0.631 (0.0057) 0.771 (0.0068) 0.635 (0.0074) 0.774 (0.0057) 0.633 (0.0054) 0.766 (0.0062) 0.593 (0.0059) 0.782 (0.0058) 0.608(0.0040) 0.749 (0.0049)

Predicted
>1 (%)

0.11% 1.04% 0 0 0 1% 2.8% 3.5% 0 0 0 0

Predicted
<0 (%)

0 0 0 0 5% 2% 0.6% 0.4% 0 0 0 0

AIC (lower is
better)

−1015 −782 −936.9 −593 −978.6 −782 −864 −587 −926 −601 −2215 −1529

SE of
coefficients

PF 0.000264 0.000335 0.000288 0.000413 0.000686 0.000766 0.002805 0.000513 0.000295 0.000555 0.000190 0.000293

RF 0.000213 0.000231 0.000231 0.000285 0.000710 0.000635 0.000322 0.000267 0.000422 0.000287 0.000106 0.000220

EF 0.000214 0.000250 0.000233 0.000307 0.000532 0.000289 0.000312 0.000333 0.000392 0.000411 0.000289 0.000216

SF 0.000195 0.000203 0.000210 0.000249 0.000316 0.000263 0.000419 0.000313 0.000149 0.000204

CF 0.000207 0.000231 0.000225 0.000288 0.000244 0.000328 0.000447 0.000348 0.000163 0.000211

FA 0.000257 0.000296 0.000279 0.000373 0.000204 0.000373 0.000305 0.000391 0.000224 0.000251

NV 0.000234 0.000217 0.000255 0.000274 0.000255 0.000310 0.000255 0.000430 0.000258 0.000204

PA 0.000168 0.000203 0.000182 0.000250 0.000165 0.000200 0.000329 0.000410 0.000329 0.000460 0.000128 0.000211

DY 0.000154 0.000161 0.000168 0.000199 0.000201 0.000209 0.000201 0.000277 0.000159 0.000116

SL 0.000144 0.000165 0.000156 0.000203 0.000379 0.000277 0.000241 0.000211 0.000295 0.000291 0.000136 0.000149

AP 0.000138 0.000170 0.000150 0.000208 0.000242 0.000221 0.000292 0.000221 0.000129 0.000169

CO 0.000153 0.000158 0.000166 0.000196 0.000151 0.000155 0.000206 0.000207 0.000311 0.000283 0.000149 0.000206

DI 0.000152 0.000218 0.000165 0.000291 0.000405 0.000393 0.000219 0.000426 0.000213 0.000396 0.000133 0.000191

QL 0.000240 0.000294 0.000263 0.000372 0.000363 0.000210 0.000299 0.000260 0.000201 0.000241

FI 0.000204 0.000143 0.000224 0.000182 0.000101 0.000100 0.000209 0.000210 0.000243 0.000182

MAE: Mean Absolute Error; RMSE: Residual Mean Squared Error; SE: Standard Error.
*Observed post baseline Mean (SD) for TOPICAL was 0.61 (0.29) and for SOCCAR was 0.75 (0.23).
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Figure 2 Distribution of EQ-5D for TOPICAL and SOCCAR. a) TOPICAL. b) SOCCAR.
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modelling purposes (Table 2). Only the TOBIT, CLAD
and BB did not predict outside the ‘observed’ range.
Mean predicted EQ-5D-3L distributions are also shown

in Figure 3a and 3b. The predicted means were 0.608
for BB, 0.584 (Linear), 0.631 (TOBIT), 0.635 (Quadratic),
Figure 3 Observed vs Predicted EQ-5D values. a) TOPICAL Data. b) SOC
0.633 (Quantile) and 0.593 (CLAD) in TOPICAL; For
SOCCAR these were 0.749 (BB), 0.771 (Linear), 0.771
(TOBIT), 0.774 (Quadratic), 0.766 (Quantile) and 0.782
(CLAD). Predicted mean EQ-5D-3L was closest to the
observed with the BB model (Table 2).
CAR Data.
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Testing models using independent data
The model developed from TOPICAL was tested on
SOCCAR data (Figure 3a, 3b and Table 3). Figure 1
compares ‘out of sample’ predicted and observed EQ-
5D-3L distributions. In particular, Figure 3a shows the
predicted vs. observed distributions for the model devel-
oped from TOPICAL and tested using the SOCCAR
dataset; the BB model predicts the over-dispersion at
values of Zero and One better than other models: in
SOCCAR, 25% of EQ-5D-3L responses were one: the BB
has predicted these very well. The CLAD and Quantile
also predict these with some success whereas TOBIT
and Linear were less accurate. Figure 3b shows the pre-
dicted mean EQ-5D-3L by health state compared to
observed values. The BB also over-predicts EQ-5D-3L at
poorer health states, but the extent of the over-prediction
is less severe.
The R2 values were highest with the BB (R2= 0.75) when

the model developed from TOPICAL data was tested on
SOCCAR data and R2= 0.61 for the model developed from
Table 3 Testing of models using independent data

Model Predicted mean (SE) [95% CI] R2

Beta (a)* 0.747 (0.0069) 0.75

[0.733, 0.760]

Beta (b)† 0.622 (0.0057) 0.61

[0.608, 0.631]

CLAD (a)* 0.671 (0.0091) 0.56

[0.652, 0.689]

CLAD (b)† 0.652 (0.0054) 0.47

[0.639, 0.660]

Linear Mixed (a)* 0.738 (0.0051) 0.63

[0.728, 0.747]

Linear Mixed (b)† 0.642 (0.0059) 0.58

[0.630, 0.653]

Quadratic (a)* 0.768 (0.0056) 0.63

[0.757, 0.778]

Quadratic (b)† 0.636 (0.0039) 0.55

[0.628, 0.643]

TOBIT (a)* 0.739 (0.014) 0.56

[0.702, 0.757]

TOBIT (b)† 0.644 (0.0084) 0.59

[0.627, 0.660]

Quantile (a)* 0.772 (0.0060) 0.62

[0.754, 0.778]

Quantile (b)† 0.661 (0.0084) 0.58

[0.644, 0.677]

*Model developed from TOPICAL trial and tested using SOCCAR Data.
†Model developed from SOCCAR trial and tested using TOPICAL Data.
‡based on 10,000 monte-carlo simulations.
SOCCAR data and tested on TOPICAL; the RMSEs were
higher compared with other models (Table 3). Mean pre-
dicted EQ-5D-3L for SOCCAR was 0.747 (95% CI: 0.733,
0.760) for the BB. Hence, the BB developed from TOP-
ICAL data predicted mean EQ-5D-3L to within 0.4%.
From 10,000 simulations, 77% of the 95% confidence
intervals for the predicted mean EQ-5D-3L contained
the observed SOCCAR mean EQ-5D-3L value of 0.75.
When the model was developed using SOCCAR data

and then tested on TOPICAL, the mean predicted mean
EQ-5D-3L was 0.622 (compared with the observed 0.61)
and 59% of the 95% confidence intervals contained the
mean EQ-5D-3L value of 0.61 observed in TOPICAL.
On possible reason for the lower proportion of coverage
is that SOCCAR patients had less severe NSCLC pa-
tients and consequently ‘better’ health states compared
to patients in the TOPICAL trial. Normal probability
plots of the model tested on SOCCAR data show resid-
uals closest to the line with the BB model (Additional
file 2: Figure S1).
RMSE % of 95% CI containing the observed mean‡

0.132 77%

0.159 59%

0.027 28%

0.154 19%

0.019 45%

0.095 23%

0.018 37%

0.093 14%

0.021 65%

0.112 24%

0.190 21%

0.148 8%
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Patient level predictions using independent data
Comparing mean predicted EQ-5D-3L with observed
mean may not always be the best way to judge model
performance because the distributions of the prediction
values tend to cluster around the observed mean [6].
For example, an observed mean utility of 0.61 compares
with a predicted mean of 0.593 using CLAD (Table 2),
a difference of 0.017 (3%). However, about 40% of indi-
vidual predicted values differed from the observed
mean by about 10%. Therefore, for each patient,
percent differences within ±5% to ±30% of observed
values were calculated. About 28% (BB) of predicted
EQ-5D-3L were within ±5% (Additional file 3: Figure S2)
of the observed EQ-5D-3L compared to 20% (Linear),
23% (TOBIT), 24% (Quadratic), 22% (Quantile) and 22%
(CLAD) with SOCCAR data. Predictions were in general
a)

The x-axis are ordered health states (1 refers to 11111 a

weighted value of the health state using the UK TTO tar

b)

The x-axis are ordered health states (1 refers to 11111 a

weighted value of the health state using the UK TTO tar

Comparison of models using TOP

Comparison of models using SOC

Figure 4 Predicted EQ-5D versus observed EQ-5D for each Model by
b) Comparison of models using SOCCAR data.
better with the BB model (the curve is above all others).
The median prediction error for the BB model is about
10% for both TOPICAL and SOCCAR. Highest prediction
errors are observed with the Linear model (median of 15%
error for both TOPICAL and SOCCAR). The QLQ-C30
responses ranged from 0 to 100 for 14 out of the 15
domains (scores for the financial domain ranged from 30
to 80).
Over-prediction in worse health states
Mean predicted EQ-5D-3L at observed health states for
each algorithm are shown in Figures 4a and 4b. The BB
model had mean predicted EQ-5D-3L estimates closest
to the observed values at a given observed health state
for TOPICAL and SOCCAR respectively. Differences
nd 84 is 33312); these are ordered according to the

iff.

nd 54 is 23223); these are ordered according to the

iff. 

ICAL data

CAR data

health state. a) Comparison of models using TOPICAL data.
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between observed and predicted mean EQ-5D-3L for
most models occur at about health states of11321 (value
on x-axis of 32 in Figure 4a) for TOPICAL and about
22222 (x-axis value of 26) for SOCCAR. The Quadratic
model under-predicted mean EQ-5D-3L at less severe
health states compared to the BB model (Figure 4a).
With SOCCAR data, the BB model approximates mean
EQ-5D-3L at each health state better than all other models
(Figure 4b). Figure 1b shows a similar plot using independ-
ent data from the TOPICAL developed algorithm.

Relationship between health states and adverse events
The relationship between adverse event frequency for
different definitions of ‘Good’ and ‘Poor’ health states
were briefly investigated. The results suggest that pa-
tients with ‘Poor’ health (defined roughly here as >11321
for TOPICAL and >22222 for SOCCAR) are also those
with a higher frequency of adverse events. In the TOP-
ICAL trial, 24% of patients in ‘Poor’ health states (i.e.
worse than 11321) experienced more than 2 grade 3-4
adverse events compared with 15% for patients in ‘Good’
health states (health states 11321 or better); for SOC-
CAR this was 66% vs. 44%.
One reason why mapping algorithms over-predict EQ-

5D-3L at ‘Poor’ health states might be because treatment
related toxicity is not directly captured into the mapping
algorithm, resulting in estimating a QoL higher than it
actually is. A similar pattern was also seen for other cut-
offs which define ‘Poor’ and ‘Good’. For example, when
the cut-off for ‘good’ and ‘poor’ was defined as health
states 21321 (EQ-5D-3L of 0.364) and >22111 respect-
ively, fewer patients in ‘good’ health states had AEs
compared with patients with ‘poor’ health states: 17%
vs. 26% of patients in ‘good’ vs. ‘poor’ health states had
at least 2 adverse events in the TOPICAL trial. A similar
pattern was observed for SOCCAR data. This suggests
that there may be a more complex underlying mapping
algorithm between EQ-5D-3L, QLQ-C30 and toxicity
which might better explain the variability and predic-
tion of EQ-5D-3L, particularly in patients with ‘Poor’
health states.
Table 4 Comparison of estimated (mean) QALY’s for all algor

TOPICAL SOCCAR

Tarceva Placebo Differenc

Observed 0.35 0.30 0.051

BB 0.34 0.29 0.053

TOBIT 0.37 0.31 0.064

CLAD 0.33 0.29 0.046

Quadratic 0.42 0.34 0.072

Mixed linear 0.32 0.28 0.041

Quantile 0.38 0.31 0.070
Impact on QALY estimates
Table 4 compares observed and expected QALYs from
each of the models for SOCCAR and TOPICAL separ-
ately. The Observed QALY difference was 0.051 for
TOPICAL (Erlotinib vs. Placebo) and 0.164 for SOCCAR
(Concurrent vs. Sequential). Predictions from the BB
model generated closest QALY estimates in both trials
with a mean QALY difference of 0.053 for TOPICAL
and 0.162 for SOCCAR (Table 4). QALY predictions
from other models ranged from 0.041 (Linear) to 0.072
(Quadratic) for TOPICAL and 0.153 (Linear) to 0.208
(Quantile).

Adjustment for demographic variables
Several additional factors were added to the model.
Although R2 changed slightly from 0.75 to 0.78 in
TOPICAL with the inclusion of ECOG (P < 0.001) and
Gender (P < 0.001), the underlying pattern of predic-
tion shown in Table 2, Table 3 and Figure 4 did not
change. Adding demographic variables does improve
model fit slightly but does not have a major impact on
predicted means and their standard errors (available
on request from authors).

Discussion
Superior predictive properties have been demonstrated
with a non-linear BB mapping algorithm developed and
tested using data from two independent lung cancer pa-
tient populations. Two mapping algorithms for different
types of lung cancer patients (poor and better prognosis)
have been shown to perform better than commonly used
models. Either algorithm could be used, but our prefer-
ence is for the one derived from the larger TOPICAL
trial due to smaller uncertainty (Table 3) and better
model fit (Table 2). Simulations assessed the uncertainty
of mean estimates of EQ-5D-3L utilities. The degree of
over-prediction of mean utilities at poorer health states
was less with the BB model compared to other models.
QALY estimates from models were also closer to the
observed values with the BB model. Our findings con-
firm previous untested assertions that the relationship
ithms

e Concurrent Sequential Difference

1.31 1.15 0.164

1.53 1.37 0.162

1.59 1.42 0.174

1.62 1.44 0.186

1.92 1.73 0.196

1.34 1.19 0.153

1.42 1.62 0.208
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between the EQ-5D-3L and QLQ-C30 may be better
understood with a non-linear model structure [5,9,15].
Previous mapping models have mostly used OLS forms,

considered inadequate or over simplistic [6]. Most reported
mapping models suffer from over-prediction at poorer
health states. Previously reported models have reported R2

values (using QLQC-30) ranging from 0.23 to 0.83 [6]; In
our study, we report similar values for these models. Rarely
do models yield values of R2 above 70%. Other models (e.g.
multinomial, ordinal) have also been used, but shown to
be inadequate [5]. Estimates based on absolute deviation
(CLAD, Quantile and adjusted censored models) predict
patient level medians, whereas the statistic of interest is the
mean. The Quadratic model takes into account non linear-
ity (by having squared terms in the model) but is essentially
a linear model (linear in parameters because the coeffi-
cients are interpreted in the same way as linear models).
Improving model fit by “discarding” or “weighting” out-

liers with extreme values [5] is not an optimal solution if
the extreme outliers with can be modelled (rather than
excluding observations). Moreover, the choice as to which
variables to square and then combine with non-squared
variables in quadratic models has many possibilities. For
example, squaring all 15 domain scores of the QLQ-C30 is
one possible choice, as is squaring 14 and have only one
non-squared term remaining. Without doing a very large
number of tests and increasing the type I error, it is
difficult to understand the relative merits of one set of
variables over another. Therefore, this can lead to some
arbitrary selection of combinations of terms to improve
model fit.
There are several advantages of the BB approach. The

BB model applied to this data confirms some superior
statistical properties in terms of accuracy and efficiency
[38,41]. The clinical interpretation of the model is still
reasonably clear. Clinical relevance is still important
since if as some argue [45] that a generic measure is suf-
ficient to provide both estimates of utilities and a clinical
effect size of HRQoL, estimates based on odds ratios are
likely to be more easily interpretable: for example the
clinical relevance of a mean treatment difference of
0.012 on the EQ-5D-3L is difficult to judge. However,
if this was equivalent to an odds ratio of 1.2 (a 20%
improvement in HRQoL), a way of relating both clinical
effects and utilities becomes possible. This can also be
extended to the response domains; treatment effects can
be interpreted using a ratio scale and mean differences
also derived. This makes the BB a powerful and flexible
mapping algorithm relevant to health economic evalu-
ation, policy and clinical decision making.
The strength of our research lies in our approach to

validating the model using independent data and exten-
sive multivariate simulation from correlated EQ-5D-3L
and QLQ-C30 data. We also explore some plausible
reasons why over-prediction at the poorer health states
occur by using adverse event data (collected in all trials)
often ignored in mapping algorithms. It is possible that
joint relationships between adverse events and EQ-5D-3L
might offer a plausible explanation for over-prediction,
because higher toxicity was observed in the poorer health
states. Some researchers suggest that EQ-5D-3L responses
have a bimodal distribution and therefore 2 separate
mapping algorithms might be needed Veerstegh [25] for
patients in ‘Poor’ and ‘Good’ health states. The nature of
the bimodality could be explored using baseline clinical
data (e.g. using baseline ECOG).
Our research has several limitations. We have not

exploited the impact on results if the true values of α
and β are different to the sample estimates. In our appli-
cation, we set α and β so that the mean EQ-5D-3L could
be modelled; other possibilities might include searching
for α and β which might optimize R2, minimise MSE
and improve predictions. Secondly, we assumed a scale
of 0 to 1, which might be suitable for some disease but
may not be suitable for others where states worse than
death are likely to be more important. Surprisingly, even
in this NSCLC population, the proportion of such cases
were low. Thirdly, model validation has also been limited
to lung cancer data and further testing would be useful
in both lung cancer (to see whether algorithms are
tumour specific) and non-lung cancer data sets (to check
for generalizability). Finally, we did not compare the BB
with other models such as Bayesian network models
which report superior predictive properties compared to
the more common models. However with such Bayesian
models, the choice of the initial (prior) estimates of
probability of EQ-5D-3L responses can influence the
predicted utility.
There are several concerns when using mapping func-

tions, a point repeated in previous research [5,6,15,19].
One key concern is that it is unknown whether the pre-
dicted utilities are close to the observed values unless we
know both. Secondly, there are questions as to what
exactly is being measured [13] or estimated because
some key information in one instrument is not included
in the other, particularly when predicting EQ-5D-3L
from clinical measures alone. One approach might be to
look at the psychometric properties of the two instruments
and also check correlations. Weak correlation (Spearman’s
or linear) might explain a poor mapping algorithm.
The first concern regarding mapping can be partially

answered with the use of simulation by quantifying
uncertainty in how well the predicted approximates the
observed can be quantified as in Table 3. This does not
tell us what the predicted EQ-5D-3L is actually measur-
ing, but it is assumed that the closer the predicted values
are to the observed numerically, the preferences become
‘essentially similar’. If in 90% of simulations, the observed
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and predicted values are close, it may be reasonable to
assume that the mapping algorithm provides estimates that
are measuring aspects of “essentially similar” preferences,
which for practical purposes might be acceptable. More-
over, the statistical significance of several predictors might
also indicate the nature of preferences; for example pain
was a highly significant predictor in the model (p < 0.0001)
for the BB model, hence the ‘nature’ of predicted prefer-
ences includes pain (also measured with EQ-5D-3L). If a
model predicts every EQ-5D-3L perfectly, then we may
wish to conclude that the model has correctly predicted
the ‘essential nature’ of the preferences (ultimately con-
tained in a single index), or remain sceptical and seek add-
itional evidence to confirm that the ‘essential nature’ of
preferences are captured by the model.
Other concerns with mapping involve time points used

when developing and applying an algorithm. For
example, including baseline data in a model which aims
to predict post-baseline treatment differences may lead
to misleading estimates. Assumptions that the rates of
change in EQ-5D-3L (the coefficients of the QLQ-C30)
are constant from one cancer type to another are also
unlikely to hold. If baseline or demographic variables are
used, the relevance of these for the target population
using the algorithm will also be important. Finally, the
mapping algorithm should offer reasonable clinical
interpretation. In lung cancer, for example we might
expect dyspnoea to be an important predictor of HRQoL.
In some models, dyspnoea (Additional file 1: Table S2) was
not statistically relevant for predicting EQ-5D-3L, although
it is an important symptom in lung cancer patients. For
increasing symptoms scores we might expect EQ-5D-3L
utilities to decrease which is not always the case.

Conclusions
The Beta-Binomial regression approach shows superior
performance compared with published models in terms of
predicting the observed EQ-5D-3L from QLQ-C30 in these
lung cancer trials. This non-linear approach may offer
advantages over existing models for mapping and as a
general modelling procedure for utilities. We also confirm
recent results that mapping algorithms have shown to over-
estimate the HRQoL at the poorer heath states. The rea-
sons why current algorithms persistently over-predict at
poorer health states requires further interrogation, perhaps
incorporating adverse event information into the models.
Guidelines on using algorithms may also be useful. Map-
ping may be useful however there are still concerns as to
whether the predicted utilities are essentially the same as
the observed values.

Consent
Written informed consent was obtained from patients for
the publication of this report and accompanying images.
Appendix I: SAS Code for Zero-One- Inflated
Beta-Binomial
Example SAS code
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