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Abstract
Background Understanding the determinants of global quality of life in cancer patients is crucial for improving their 
overall well-being. While correlations between various factors and quality of life have been established, the causal 
relationships remain largely unexplored. This study aimed to identify the causal factors influencing global quality of 
life in cancer patients and compare them with known correlative factors.

Methods We conducted a retrospective analysis of European Organization for Research and Treatment of Cancer 
Quality of Life Questionnaire data, alongside demographic and disease-related features, collected from new cancer 
patients during their initial visit to an oncology outpatient clinic. Correlations with global quality of life were identified 
using univariate and multivariate regression analyses. Causal inference analysis was performed using two approaches. 
First, we employed the Dowhy Python library for causal analysis, incorporating prior information and manual 
characterization of an acyclic graph. Second, we utilized the Linear Non-Gaussian Acyclic Model (LiNGAM) machine 
learning algorithm from the Lingam Python library, which automatically generated an acyclic graph without prior 
information. The significance level was set at p < 0.05.

Results Multivariate analysis of 469 new admissions revealed that disease stage, role functioning, emotional 
functioning, social functioning, fatigue, pain and diarrhea were linked with global quality of life. The most influential 
direct causal factors were emotional functioning, social functioning, and physical functioning, while the most 
influential indirect factors were physical functioning, emotional functioning, and fatigue. Additionally, the most 
prominent total causal factors were identified as type of cancer (diagnosis), cancer stage, and sex, with total causal 
effect ratios of -9.47, -4.67, and − 1.48, respectively. The LiNGAM algorithm identified type of cancer (diagnosis), nausea 
and vomiting and social functioning as significant, with total causal effect ratios of -9.47, -0.42, and 0.42, respectively.

Conclusions This study identified that causal factors for global quality of life in new cancer patients are distinct 
from correlative factors. Understanding these causal relationships could provide valuable insights into the complex 
dynamics of quality of life in cancer patients and guide targeted interventions to improve their well-being.

Keywords Causal inference, Quality of life, Cancer, Machine learning, Regression analysis, Social functioning, 
Emotional functioning

Solving the puzzle of quality of life in cancer: 
integrating causal inference and machine 
learning for data-driven insights
Hakan Şat Bozcuk1* and Mustafa Serkan Alemdar1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12955-024-02274-7&domain=pdf&date_stamp=2024-7-31


Page 2 of 11Bozcuk and Alemdar Health and Quality of Life Outcomes           (2024) 22:60 

Background
In recent decades, while the primary focus of cancer 
treatment has been on achieving a cure or prolonging 
survival, there has been a growing recognition of the 
importance of improving the quality of life (QoL) for 
patients with cancer [1]. Various scales and question-
naires are used to assess QoL in different cancer types, 
such as breast cancer, but not all of these tools have been 
universally validated across all settings and cultures [2, 3]. 
One of the most extensively studied instruments for can-
cer patients is the European Organization for Research 
and Treatment of Cancer Quality of Life Questionnaire 
(EORTC QLQ-C30) [4, 5]. Although global QoL is a key 
dimension of this scale, it is not merely the sum of its 
individual parts, which encompass various dimensions of 
QoL [6]. Despite our understanding that many disease- 
or treatment-related factors may influence specific QoL 
dimensions, the underlying causal factors of global QoL 
remain largely unexplored.

Although predictive and explanatory models in the 
field of medicine have predominantly adopted a correla-
tional approach, it is essential to recognize that correla-
tion does not imply causation. Identifying causal factors 
is crucial for evaluating the impact of interventions, pol-
icy changes, or exposure to certain factors on outcomes, 
particularly in the medical domain [7]. Artificial intelli-
gence (AI) has found widespread applications in medi-
cine for tasks such as diagnosis, research, and prediction, 
often leveraging correlated data [8]. However, to over-
come the limitations of working solely with correlated 
data, it is imperative to conduct special analyses, such 
as causal inference. This kind of analysis theoretically 
enables clinicians and researchers to discern causal fac-
tors and evaluate treatment effects using observational 
data, thereby providing insights into complex networks 
of relationships [9]. Therefore, gaining a deeper under-
standing of the causal factors underlying QoL is pivotal 
for enhancing the overall well-being and QoL of cancer 
patients.

Machine learning (ML), a critical subset of artificial 
intelligence (AI), involves the creation of algorithms 
that can learn from data and make predictions or deci-
sions without explicit programming for specific tasks. 
This capability allows ML to analyze vast and complex 
datasets, identifying patterns and making informed pre-
dictions that can significantly enhance various domains, 
including medicine. Integrating ML with causal inference 
allows researchers and clinicians to not only predict out-
comes but also understand the underlying mechanisms 
driving these outcomes, leading to more effective and 
targeted interventions.

For this reason, in this study, we sought to explore the 
causal factors influencing global QoL by analyzing obser-
vational data collected from consecutive cancer patients 

during their initial appointments at a cancer center. By 
applying analytical methods capable of identifying causal 
relationships, we aimed to shed light on the intricate web 
of factors influencing global QoL in cancer patients.

Methods
Patient selection and data collection
All patients with cancer who visited a private hospital’s 
cancer center and were under the care of the same attend-
ing physician were provided with the Turkish version of 
the EORTC QLQ-C30 version 3 questionnaire during 
their initial appointment at the center [10]. We included 
quality of life data from all consecutive new patients who 
consented to complete the questionnaire between March 
2018 and April 2021. Additionally, we collected primary 
demographic and disease-related information.

Quality-of-life dimension scores were computed fol-
lowing the guidelines outlined in the scoring manual. 
Quality of life dimensions of the EORTC QLQ-C30 ques-
tionnaire were QL2; global quality of life, PF2; physical 
functioning, RF2; role functioning, EF; emotional func-
tioning, CF; cognitive functioning, SF; social functioning, 
FA; fatigue, NV; nausea and vomiting, PA; pain, DY; dys-
pnea, SL; insomnia, AP; appetite loss, CO; constipation, 
DI; diarrhea, and FI; financial difficulties. The study was 
approved by the ethical committee of the Medical Park 
Hospital, Antalya, on the 17th of January 2024, with a ref-
erence number of 2024/1.

Evaluation of correlative factors for global quality of life
In order to contrast with the findings from evaluation of 
causal factors for global quality of life, we first wanted 
to conduct a non-causal, univariate regression analysis 
of potential predictor variables for global QoL (QL2). 
Variables with a p value of 0.10 or less in the univariate 
analysis were then included in the multivariate regres-
sion analysis. Stepwise method was then used in the mul-
tivariate analysis to select the significant variables. For 
diagnostic purposes, we categorized patients with breast 
cancer versus other cancers or with lung or colorectal 
cancer versus other cancers. We considered a p value less 
than 0.05 to indicate statistical significance. The statisti-
cal analyses were conducted using SPSS version 21.

Evaluation of causal factors for global quality of life
To investigate causal inference, we employed two dis-
tinct approaches. Firstly, we manually constructed a 
directed acyclic graph (DAG) using domain knowledge 
and the results of the preliminary exploratory analysis 
of the dataset (Expert-driven construction of the DAG). 
DAGs model the causal relationships among the variables 
of interest. DAGs are graphical representations where 
nodes signify variables and directed edges denote causal 
effects, with the constraint that no cycles exist, ensuring 
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a unidirectional flow of causation. We constructed our 
DAGs based on domain knowledge and prior empiri-
cal evidence to accurately capture the underlying causal 
mechanisms. These graphs were instrumental in identi-
fying confounding variables, mediators, and potential 
sources of bias, thus guiding our statistical analysis and 
ensuring the robustness of our causal inferences. By 
leveraging DAGs, we aimed to achieve a clear and precise 
delineation of the causal pathways influencing the out-
comes of our study, ultimately enhancing the validity and 
interpretability of our findings.

To construct DAG, we utilized DoWhy Python library, 
which is used for evaluating causal inference, to calculate 
and plot the separate impacts of direct, indirect, and total 
causal effects [11, 12]. Percentage direct causal strength 
quantifies the influence of a specific factor (or node) on 
another within a directed acyclic graph (DAG) in terms 
of direct causation. It measures the proportion of total 
direct causal impact exerted by each factor relative to 
the sum of all direct causal impacts on the target vari-
able. Additionally, the percentage indirect causal effect 
quantifies the influence of a specific factor on an out-
come through one or more intermediary variables within 
a DAG. It measures the proportion of the total indirect 
causal impact exerted by each factor relative to the sum 
of all indirect causal impacts on the target variable. As 
stated above, to be included in DAG, factors either had 
to be associated with each other during the exploratory 
statistical analysis, or had to be linked according to the 
oncology domain knowledge.

Secondly, we utilized the Lingam Python library to 
implement a fully automated machine learning approach 
based on the Linear Non-Gaussian Acyclic Model (LiN-
GAM) [13]. LiNGAM is a machine learning algorithm 
used in causal discovery, specifically designed to iden-
tify causal structures from observational data. LiNGAM 
assumes that the data follows a linear relationship and 
that the errors (or noise) are non-Gaussian. This assump-
tion allows the algorithm to distinguish between cause 
and effect, which is a significant advantage over other 
linear methods that might not be able to differenti-
ate between the two. LiNGAM is also used in fields like 
econometrics, genomics, and various social sciences 
where understanding the causal relationships between 
variables is crucial. It operates under the principle that if 
the data generation process follows a linear non-Gauss-
ian model, then it is possible to identify the causal order-
ing of the variables and the corresponding causal effects. 
In our study, LiNGAM allowed us to visualize the LiN-
GAM adjacency matrix and calculate the total causal 
effects of various factors [14, 15]. We employed these 
two approaches (DAG and LiNGAM) basically to more 
soundly and validly test causal assumptions and relation-
ships that are hidden in our dataset.

These analyses aimed to uncover not only the associa-
tional relationships between variables and global quality 
of life but also the potential causal factors influencing it. 
By employing the above statistical methods and lever-
aging both domain knowledge and automated machine 
learning algorithms, we sought to gain a deeper under-
standing of the complex interplay of factors shaping the 
overall quality of life experienced by cancer patients 
attending the center in the specified time period.

During the preparation of this work, the authors used 
Chat GPT 3.5 to improve readability. After using this 
tool, the authors reviewed and edited the content.

Results
General results
A total of 469 patients were recruited, with a median age 
of 56 years and a 63% female distribution. Breast cancer 
was the most common diagnosis and was noted in 40% of 
patients. The other cancers category (37%) included gas-
tric cancer (4%), prostate cancer (4%), testis cancer (4%), 
skin cancer (2%) and ovarian cancer (2%) as the most 
prominent subtypes, and remaining various other cancer 
types (21%). The patient demographics and details can 
be found in Table  1. The median value for QL2 was 58 
on a scale of 100. The distribution of QL2 is presented in 
Fig. 1.

Associates of global quality of life
According to the univariate analysis, all quality-of-life 
dimensions individually and diagnosis (lung or colorectal 
vs. other cancers) and disease stage were associated with 
the QL2 score. The feature with the highest t value was 
fatigue (FA) scores, with a beta of -0.61, t = -16.60, and 
P < 0.001. According to the multivariate analyses, 7 fac-
tors were significant, namely, disease stage, role function-
ing (RF2), emotional functioning (EF), social functioning 
(SF), fatigue (FA), pain (PA) and diarrhea (DI), and the 
factor with the highest t value was SF, with a beta of 0.18, 
t = 3.71, and P < 0.001. The details of the regression analy-
ses can be found in Table 2.

Causal factors for global quality of life
Expert-driven construction of the DAG
With expert-driven construction of the DAG, the resul-
tant model was found to provide explanatory value 
among the possible permuted DAGs, as shown by a P 
value LMC = 0.02 and a P value TPa < 0.01, which are 
both statistically significant. The plot for causal model 
evaluation is given in Fig. 2. The plot and the accompany-
ing tests show that the given DAG structure has a lower 
fraction of violations for both the Local Markov Condi-
tion and Transitive Pairing compared to randomly per-
muted DAGs. The low p-values suggest that these results 
are statistically significant, indicating that the DAG is a 
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Table 1 Demographics and quality of life data 
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valid and explanatory model for the underlying causal 
relationships in the data.

The plotted DAG with the network of causal relation-
ships among the causal factors and QL2 is detailed and 
can be visualized in Fig. 3.

The DAG structure has some underlying patterns, 
although not all causal effects are of large amplitude, for 
example, a number of clinical factors and quality of life 
domains on the left column in Fig. 3 appear to effect PF2; 
physical functioning, among others, and PF2 possesses 
direct and indirect causal effects (through EF; emotional 
functioning and CF; cognitive functioning) on QL2; 
global quality of life.

Among the direct causal factors, the most influ-
ential was emotional functioning, with a percentage 
direct causal strength of 38%. When indirect causal fac-
tors were considered, physical functioning was at the 
top, with a percentage indirect causal strength of 30%. 
Finally, among the total causal factors, diagnosis (lung 
or colorectal cancer versus other cancers) was the most 
influential causal factor, with a causal effect ratio of -9.47, 
other prominent total causal factors were stage and sex. 
DAG did not show valid paths for some of the causal 
associations between various factors, including diagno-
sis, and QL2, which is the main outcome of interest. In 
causal analysis, unobserved variables (also called latent 
variables) can play a crucial role in the causal relation-
ships between observed variables, and as such, the plot-
ted DAG we formulated may conceal some of these latent 
variables. The plots for causal factors found by the DAG 

Table 2 Associates of global quality of life 

Fig. 1 Distribution of Global Quality of Life (QL2) scores. Global quality of 
life distribution. QL2; Global quality of life. The Y-axis shows the scores on a 
scale ranging from 0 to 100

 



Page 6 of 11Bozcuk and Alemdar Health and Quality of Life Outcomes           (2024) 22:60 

Fig. 3 Causal graph for global quality of life. Directed acyclic graph model evaluation. DAG: Directed acyclic graph. Two tests show that the DAG structure 
is explanatory

 

Fig. 2 Evaluation of directed acyclic graph (DAG). Directed acyclic graph structure. Directed acyclic graph (DAG) network of causal relationships among 
variables. Quality of life dimensions: NV, nausea and vomiting; SL, insomnia; AP, appetite loss; CO, constipation; DI, diarrhea; FI, financial difficulties; PF2, 
physical functioning; FA, fatigue; PA, pain; DY, dyspnea; RF2, role functioning; EF, emotional functioning; CF, cognitive functioning; QL2, global quality of 
life; SF, social functioning. Time_after_dx; time elapsed after diagnosis, diagx2_2d; type of cancer diagnosis (lung or colorectal cancer versus other can-
cers), active_treatment; whether the patient is on active treatment, stage; TNM stage of cancer
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structure are not separately given for the purpose of 
brevity.

LiNGAM machine learning causal algorithm
With the Lingam algorithm, the adjacency matrix showed 
the network and direction of connections among the 
causal factors themselves and the causal factors directly 
and indirectly affecting QL2 and QL2 itself. There were 5 
direct causal connections between various causal factors 
and QL2, namely, from EF to QL2, from FA to QL2, from 
PA to QL2, from RF2 to QL2, and from SF to QL2. The 
adjacency matrix is presented in Fig. 4. Interestingly, the 
causal effect direction in Fig. 4 between diagnosis and sex 
is from diagnosis to sex, whereas, we would expect the 
contrary, as difference in gender would be causing dif-
ferent cancers, such as female gender is expected to have 
more breast cancers, compared to the male gender. Here, 
apparently, the model wrongly guesses the direction of 
causal effect. In some cases, the relationship might be 
bidirectional or more complex than a simple cause-effect 
direction. LiNGAM might struggle with such relation-
ships, leading to incorrect causal directions, which we 
think is the case here.

When total causal effects were considered, the most 
influential causal factor for QL2 was again the diagno-
sis (lung or colorectal cancer versus other cancers), as 
in the case with expert driven construction of the DAG. 
Figure 5 shows the causal effects of other factors on QL2. 
The main causal factors affecting QL2 revealed by man-
ual DAG construction and the LiNGAM algorithm are 
detailed in Fig. 6, which shows the causal effects of diag-
nosis, stage, sex, nausea vomiting (NV), and SF on QL2.

Discussion
We have demonstrated, for the first time, that the type 
of cancer diagnosis, specifically the presence of lung or 
colorectal cancer versus other cancers, exhibits a causal 
relationship with global quality of life as shown by 2 
separate methods of causal analysis. While some previ-
ous studies have indicated an association between can-
cer type and various quality of life scores, our analysis 
using machine learning and Bayesian inference tech-
niques revealed that this relationship is not purely cor-
relative but has a causal component [16]. In contrast, 
some authors have not shown a difference in global qual-
ity of life with respect to cancer type [17]. Interestingly, 

Fig. 4 LiNGAM adjacency matrix of causal factors. Linear Non-Gaussian Acyclic Model (LiNGAM) adjacency matrix. Network of complex causal relation-
ships among variables in the study. x0; age, x1; sex, x2; type of cancer diagnosis (lung or colorectal cancer versus other cancers), x3; TNM stage of cancer, 
x4; whether the patient is on active treatment, x5; time elapsed after diagnosis, x6; global quality of life, x7; physical functioning, x8; role functioning, x9; 
emotional functioning, x10; cognitive functioning, x11; social functioning, x12; fatigue, x13; nausea and vomiting, x14; pain, x15; dyspnea, x16; insomnia, 
x17; appetite, x18; constipation, x19; diarrhea, x20; financial difficulties. Each node in the plot represents a variable, and the directed edges between nodes 
indicate the direction of causality. LiNGAM aims to identify the causal ordering of variables and their causal effects, so the plot will show the inferred causal 
structure based on the analysis of the data
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Fig. 6 Main total causal effects and global quality of life. Main total causal influences and global quality of life. Variables with the greatest total causal 
effects on global quality of life, as demonstrated in the Directed Acyclic Graph (DAG) and Linear Non-Gaussian Acyclic Models (LiNGAM). Global quality 
of life with reference to 6a: diagx2_2d; type of cancer diagnosis (lung or colorectal cancer versus other cancers), 6b: disease stage, 6c: sex, 6d: NV; nausea 
and vomiting, 6e: SF; social functioning. Figure 6 includes diagnosis, stage and sex from DAG, and diagnosis, NV and SF from LiNGAM

 

Fig. 5 Total causal effects of LiNGAM. Linear Non-Gaussian Acyclic Model (LiNGAM) total causal effect scores. Abbreviations: diagx2_2d: lung or colorectal 
cancer, or other cancers, stage: cancer TNM stage at admission, active_treatment: receipt of chemotherapy or other systemic treatments, surgery or radio-
therapy at the time of admission, time_after_dx: time elapsed since diagnosis at the time of admission, PF2: physical functioning, RF2: role functioning, 
EF: emotional functioning, SF: social functioning, CF: cognitive functioning, FA: fatigue, NV: nausea and vomiting, PA: pain, DY: dyspnea, SL: insomnia, AP: 
appetite loss, CO: constipation, DI: diarrhea, FI: financial difficulties
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the most influential causal factors for QL2 identified in 
this study differ from the strongest associates of QL2. 
Although the type of cancer diagnosis emerged as the 
most influential causal factor for QL2 in both the manual 
approach and the LiNGAM algorithm, it did not reach 
statistical significance in the multivariate analysis con-
ducted using classical regression analysis. Similarly, while 
social functioning (SF) was the strongest associate of QL2 
in the regression analysis, it did not emerge as the most 
influential causal factor in our causal analyses. This dis-
parity underscores some unique insights that causal anal-
ysis could offer, revealing complex causal relationships 
that might not be captured by traditional associative or 
correlative approaches, such as regression analysis.

The DAG we manually coded did not include a vis-
ible path between the type of cancer diagnosis and QL2, 
but the total causal effect of the type of cancer diagno-
sis could be quantified algorithmically. However, looking 
at the LiNGAM adjacency matrix, we see that there are 
various possible paths between the type of cancer diag-
nosis and QL2, and thus, in that fashion, the LiNGAM 
adjacency matrix captured the complex relationships in 
our study better than the DAG. A possible explanation 
for the discrepancy between these 2 separate approaches 
(Expert-driven construction of the DAG versus LiN-
GAM) in our study is that the manually coded DAG failed 
to capture some of the important variables that were vis-
ible in the LiNGAM adjacency matrix. In other words, 
these variables remained latent for some of the relation-
ships in the DAG structure, making LiNGAM, a machine 
learning model, more explanatory for our purpose.

The use of DAG and LiNGAM approaches in causal 
analysis offers several strengths and limitations. DAGs 
provide a clear and intuitive graphical representation of 
causal relationships, aiding in the identification of con-
founders, mediators, and potential sources of bias [18]. 
They facilitate the understanding of complex causal 
structures and the formulation of testable hypotheses. 
LiNGAM extends this by enabling the discovery of causal 
ordering and effects from observational data under the 
assumptions of linearity and non-Gaussian errors, offer-
ing a robust method for causal inference when these 
conditions are met. However, both approaches have 
limitations. DAGs rely heavily on domain knowledge 
for accurate construction, and their effectiveness is con-
strained by the correctness and completeness of this 
prior knowledge. LiNGAM’s assumptions of linearity and 
non-Gaussianity may not always hold in real-world data, 
potentially limiting its applicability and accuracy. Addi-
tionally, LiNGAM can be sensitive to sample size and 
may struggle with high-dimensional data. Despite these 
limitations, the combined use of DAGs and LiNGAM 
provided a powerful toolkit for causal discovery and anal-
ysis for our study.

If the type of cancer directly influences global quality of 
life at the time of presentation, several factors may drive 
this phenomenon. Previous studies, including ours, have 
assessed quality of life across different cancer popula-
tions and have identified differences in various dimen-
sions of quality of life; those cancer populations included 
metastatic or nonmetastatic cases, men or women, those 
with different categories of weight loss, performance sta-
tus, weight loss, time from last treatment, and emotional 
and functional well-being [16, 19–21]. Specifically, the 
literature shows differences in the QL2 score between 
lung cancer patients and patients with other types of 
cancer [22]. Likewise, the quality-of-life score is also low 
in patients with colon cancer [23]. These differences are 
likely attributed to the distinct biological profiles of vari-
ous cancers, with lung cancer often presenting at more 
advanced stages and having a poorer prognosis, espe-
cially in patients with stage 4 disease. Causal factors alter 
the magnitude of the affected variable, leading to a differ-
ence in its magnitude. This aligns with the basic concept 
of causality, where one variable (the cause) influences 
another variable (the effect). Thus, from this perspective, 
type of cancer causally effects and leads to difference in 
global quality of life in cancer patients. Additionally, the 
stigma associated with different types of cancer and per-
ceptions of their curability may impact patients’ experi-
ences [24, 25]. For instance, a lung cancer patient may 
perceive a more unfavorable outlook than a patient with 
breast cancer. Thus, not only the biological and symp-
tomatic aspects of the disease but also the patient’s per-
ception and societal view of the disease may influence 
the QL2 score. Further research focusing on the percep-
tion dimension and its relationship with quality-of-life 
dimensions across various cancers could provide valuable 
insights in this direction.

Apart from type of cancer, which has a causal effect 
on global quality of life, stage also emerged as another 
causal factor. Additionally, functional dimensions of QoL 
had positive causal effects, whereas symptom scales had 
negative causal effects on QoL2. Although there is some 
evidence that there is no association between stage or 
functional dimensions of QoL and QoL2, some avail-
able evidence suggests that some domains of QoL may be 
marginally different with respect to the disease stage [17, 
21].

While our study provides important insights, it is not 
without limitations. Despite including data from 469 
patients, a larger sample size, potentially in the range of 
thousands of cases, would be preferable for elucidating 
more intricate causal relationships and accurately assess-
ing their strength. Additionally, obtaining more compre-
hensive data on social security, financial status, treatment 
details, and patients’ perceptions of their disease status 
would enable a more thorough examination of the causal 
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effects of these factors in addition to the other variables 
considered in this study. Lastly, the validity of LiNGAM 
has been proven only for continuous variables; thus, our 
use of LiNGAM, which includes categorical or discrete 
data, is experimental.

The rise of AI and machine learning techniques is 
reshaping medical practice [26]. These technologies, 
including computer vision, natural language process-
ing, and various machine learning algorithms, have 
been increasingly utilized for predicting outcomes and 
prognosis in recent years. Causal inference, whether 
through probabilistic, statistical, or machine learning-
oriented algorithms, addresses the question of “Why did 
this happen?” rather than “What features or factors are 
associated with this outcome?” [27, 28]. This approach is 
expected to influence medical policies and interventions 
by providing deeper insights into causal relationships. 
Furthermore, causal inference techniques, such as causal 
survival analysis, are gaining traction in other research 
areas and are anticipated to play a more prominent role 
in medical research in the future [29]. The findings from 
our study lend support to this trend.

In summary, our study highlights the causal effect of 
cancer type, among other factors, on changes in QL2 
scores in cancer patients. Importantly, this causal effect 
was not evident in classical regression analysis. The 
causal inference methodologies employed in our study 
have the potential to inform policies and interventions 
aimed at improving quality of life in cancer patients and, 
more broadly, to address numerous causal questions in 
oncology and medicine.

Conclusions
We found that cancer type is the primary causal factor 
for global quality of life in cancer patients. Additionally, 
our causal analyses revealed different factors compared 
to those identified in the regression analyses.
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