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Abstract
Background Patient-reported outcomes (PROs) can be obtained outside hospitals and are of great significance for 
evaluation of patients with chronic heart failure (CHF). The aim of this study was to establish a prediction model using 
PROs for out-of-hospital patients.

Methods CHF-PRO were collected in 941 patients with CHF from a prospective cohort. Primary endpoints were all-
cause mortality, HF hospitalization, and major adverse cardiovascular events (MACEs). To establish prognosis models 
during the two years follow-up, six machine learning methods were used, including logistic regression, random 
forest classifier, extreme gradient boosting (XGBoost), light gradient boosting machine, naive bayes, and multilayer 
perceptron. Models were established in four steps, namely, using general information as predictors, using four 
domains of CHF-PRO, using both of them and adjusting the parameters. The discrimination and calibration were then 
estimated. Further analyze were performed for the best model. The top prediction variables were further assessed. The 
Shapley additive explanations (SHAP) method was used to explain black boxes of the models. Moreover, a self-made 
web-based risk calculator was established to facilitate the clinical application.

Results CHF-PRO showed strong prediction value and improved the performance of the models. Among the 
approaches, XGBoost of the parameter adjustment model had the highest prediction performance with an area 
under the curve of 0.754 (95% CI: 0.737 to 0.761) for death, 0.718 (95% CI: 0.717 to 0.721) for HF rehospitalization and 
0.670 (95% CI: 0.595 to 0.710) for MACEs. The four domains of CHF-PRO, especially the physical domain, showed the 
most significant impact on the prediction of outcomes.

Conclusion CHF-PRO showed strong prediction value in the models. The XGBoost models using variables based on 
CHF-PRO and the patient’s general information provide prognostic assessment for patients with CHF. The self-made 
web-based risk calculator can be conveniently used to predict the prognosis for patients after discharge.
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Introduction
Chronic heart failure (CHF) is the terminal stage of car-
diovascular diseases. The high mortality and readmission 
rates put a heavy burden to families and societies [1, 2]. 
Accurate prediction of the prognosis of patients with 
CHF can assist physicians in making treatment decisions 
and improve the prognosis of the patients. Most predic-
tion models currently depend on clinical indicators and 
biomarkers obtained during the hospitalization [3, 4]. 
However, it is impossible for patients and their families to 
obtain parts of the necessary clinical indicators after dis-
charge. Moreover, the prediction models still depend on 
unchanged baseline data even after the patients are out-
of-hospital, which reduces the predictive performance of 
the models. Therefore, models based on the data that can 
be obtained outside hospitals and reflects the changes 
of disease and patients’ status will be more conducive to 
assess the prognosis of CHF patients after discharge and 
guide chronic disease management.

Patient-reported outcomes (PROs) are presented in 
the form of self-filling scales and could be obtained 
conveniently for patients after discharge [5]. The guid-
ance of the US Food and Drug Administration claimed 
that PROs should be used as one of the most important 
endpoints for evaluating the clinical trials of new drugs 
[5]. The importance of PROs has gradually been real-
ized by physicians and researchers. Considering CHF, 

PROs have a higher possibility of recording the effects of 
the course of the illness than other chronic diseases [6]. 
Moreover, studies showed that PRO was closely associ-
ated with the prognosis of CHF [7–10]. The 2022 Ameri-
can Heart Association guideline for management of HF 
recommended that standardized assessment of patient-
reported outcomes was able to provide incremental 
information for patients’ prognosis [7]. Therefore, for 
patients lacking clinical indicators or biomarkers after 
discharge, we could use PROs as alternative prognosis 
indicators.

PROs covered the domains of physiological symptoms, 
psychology, social support, treatment compliance, and 
satisfaction [5]. Any alteration in the patient’s condition 
may be expected to be noted in PROs, which makes the 
data of PROs complex and uncertain. Machine learn-
ing (ML), such as random forest and extreme gradient 
boosting (XGBoost), is currently considered to be data 
analysis methods with high predictive performance in 
clinical predictive models. Therefore, in this study for 
CHF patients who lacked some clinical indicator after 
discharge, we tried to applied a PRO as an alternative 
to establish a prognosis model via machine learning 
approaches. The model will predict the risk of death and 
HF readmission for those patients and facilitate appropri-
ate individual patient management.
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Methods
Setting and participants
This study was designed as a multi-center, prospective 
cohort study. The checklist of items for TRIPOD state-
ment of this study was shown in Table S1. Patients from 
three medical centers in Shanxi Province of People’s 
Republic of China were enrolled between July 1, 2017 
and June 30, 2019. A total of 1011 patients hospitalized 
for CHF were enrolled in the study. Among them, 1003 
(99.21%) patients completed the CHF-PROM, and 941 
(93.08%) of them attended the follow-up examinations. 
The flow diagram is shown in Fig. 1.

Eligibility requirements included only patients who 
were diagnosed with HF according to the ESC guideline 
[1] and classified as functional class II-IV according to 
the New York Heart Association (NYHA). Patients who 
had suffered acute cardiovascular events two months 
prior to enrolment or were not able to complete the ques-
tionnaire owing to intellectual disabilities were excluded. 
All subjects provided informed consent for inclusion 
before they participated in the study. The study was con-
ducted in accordance with the Declaration of Helsinki, 
and the protocol was approved by Institutional Review 
Board of Shanxi Medical University.

Measures
General information and PROs of patients were collected 
during hospitalization. All participants who reported 
PROs were followed-up after discharge at 1, 3, and every 
6 months thereafter by telephone to obtain the informa-
tion on outcomes. To guarantee the quality of the data 
collected, all questionnaires were collected by profession-
ally trained individuals.

General information
The following demographic and clinical information were 
collected as general information in our study: age, sex, 
body mass index (BMI), occupation, level of education, 
health insurance, history of smoking and alcohol drink-
ing, family history, blood pressure, heart rate, NYHA 
class, and severe comorbidities.

The following points were considered when collecting 
the general information:

  • Health insurance was classified as either urban 
or rural health insurance in our study based on 
the national policies of the People’s Republic of 
China. Urban health insurance covers about 80% 
of hospitalization expenses, whereas rural health 
insurance covers only 60%.

  • Comorbidities included coronary heart disease, 
valvular heart disease, hypertension, diabetes 

Fig. 1 Flowchart of the Study
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mellitus, atrial fibrillation, chronic obstructive 
pulmonary disease, and renal insufficiency [1].

CHF-PRO
The patient-reported outcome of chronic heart fail-
ure measure (CHF-PROM) developed by the authors’ 
research group was used in this study [11]. The struc-
ture of CHF-PROM is presented in Table S2. This ques-
tionnaire contains 57 items and covers four domains of 
patients’ health status including the physical domain 
(PHY), psychological domain (PSY), social domain 
(SOC), and therapeutic domain (TRE).

Outcomes
The outcomes of interest included all-cause mortality, HF 
hospitalization, and major adverse cardiovascular events 
(MACEs) throughout the two-year follow-up. All-cause 
mortality was defined as death due to any cause. HF hos-
pitalization was defined as an admission of more than 
24 h with exacerbation of HF after the index admission. 
HF as the cause for hospitalization was judged by profes-
sionals during follow-up and confirmed by ICD-10 diag-
nosis of HF as the patient’s primary diagnosis. MACEs in 
the study comprised all-cause mortality and HF hospital-
ization as mentioned above.

Feature selection and data preprocessing
Training set was performed via a cohort of 677 patients 
of the First Hospital and the Second Hospital of Shanxi 
Medical University, and validation set was completed via 
a cohort of 264 patients of Shanxi Cardiovascular Hospi-
tal. Missing value filling was performed in the training set 
and the validation set, respectively. In the training set, the 
parameter adjustment was performed with 10-fold cross-
validation, while in the validation set, external validation 
and 95% confidence interval estimation were conducted 
via Bootstrap.

The independent variables of our study comprised 24 
general information data points and the 4 domains of 
CHF-PRO (PHY, PSY, SOC, and TRE). All of the con-
tinuous variables were presented as means ± standard 
deviations (SD) or median ± interquartile range. The cat-
egorical variables were expressed as n (%). Continuous 
variables were compared using independent t-tests for 
normality distribution and rank-sum test for non-nor-
mality distribution. The chi-square test was used to com-
pare the rates. All tests were two-sided, and P < 0.05 was 
considered as statistical significance.

The variables that missing more than 30% were deleted 
[12, 13]. For the data missing less than 30%, we added it 
with missForest [14] which was completed by R version 
4.0.5 (Lucent Technologies, Murray Hill, NJ, USA). In 
addition, Cronbach’s α coefficient was used to assess the 
data quality of the CHF-PRO. Since CHF-PRO comprised 

the complete entity, we used all the 4 domains of it as the 
prediction features, and recursive feature elimination 
(RFE) method was used to select the variables of general 
information. The gain information was used to imple-
ment the process of feature-ranking.

Processing of imbalanced data
In this study the ratio between mortality rate and survival 
rate was rougthly 1:13, which was a severe unbalance dis-
tribution of samples. Accordingly, were the ratios of read-
mission (1:3) and MACEs (1:2) were observed. Therefore, 
we applied synthetic minority over-sampling technique 
algorithm (SMOTE) to resolve the imbalanced distribu-
tions of the outcomes [15].

Machine learning model approaches
Six ML approaches were used to train prediction mod-
els for mortality and HF hospitalization over the two 
years of follow-up. 10-fold cross-validation was used to 
select the value of the training parameters in an attempt 
to minimize the model deviance. The approaches applied 
in the study included logistic regression, random forest 
(RF) classifier, XGBoost, light gradient boosting machine 
(LightGBM), naive bayes (NB), and multilayer perceptron 
(MLP). Logistic regression (LR) was performed in this 
study as the basic model for the prediction. RF is a super-
vised ensemble learning method and based on decision 
trees that were built from the variable set. RF performs 
well in solving the overfitting problem of unbalanced 
data [16]. XGBoost is another ensemble tree algorithm. 
It is composed of a series of base classifiers which are lin-
early superimposed to optimize the algorithm after they 
are determined [17]. The LightGBM model is a type of 
optimized gradient boosting decision tree and can reduce 
the calculation amount of the structure fraction [18]. NB 
is based on Bayesian decision theory and Bayesian net-
works, and it is known to be insensitive to missing data 
[19], exhibit stable classification efficiency, and can pro-
cess multiple classification tasks. Therefore, we were able 
to obtain better classification results by using NB [20]. 
MLP is a commonly used feedforward artificial neural 
network. It can adjust the weight of connections between 
neurons to obtain an output value which is equal to or 
close to the target value [21].

All models were constructed in four phases. First, they 
were constructed using only general information as pre-
dictors (model 1). Second, they were modified using four 
domains of CHF-PRO (model 2). Third, four domains of 
CHF-PRO were added to the general information pre-
dictors (model 3). Finally, we performed the parameter 
adjustment for model 3 (model 4). In the fourth step, we 
adjusted the parameters through learning curve and grid 
search to obtain the optimal configuration for each ML 
algorithm. Various software packages in the Python 3.7 



Page 5 of 11Tian et al. Health and Quality of Life Outcomes           (2023) 21:31 

that were used to perform the analysis and the optimized 
hyperparameters of each of the ML algorithms were 
shown in Table S3. We traversed all the combinations of 
parameters for each ML algorithm, and then determined 
the prediction results using 10-fold cross validation. The 
area under curve (AUC) was used to assess the model fit-
ness function of variables.

Evaluation of candidate machine learning models
Prediction performance of all model approaches was 
evaluated using the following parameters for the valida-
tion data from Shanxi Cardiovascular Hospital:

  • AUC was used to evaluate the discrimination ability 
of the predictive models. A 95% confidence interval 
(CI) of AUC was calculated in this study.

  • Brier score was used to assess the accuracy of the 
probability of the models and is defined as the mean 
squared differences between actual binary outcomes 
and predicted probabilities [22]. It ranges from 0 to 
1.00, with a score of 0 indicating perfect prediction.

  • Calibration curves were used to determine the 
proximity between the predicted probabilities.

and observed probabilities. of outcomes for the opti-
mal models.

The model with the optimal parameters was selected as 
the final model to the corresponding outcome for further 
analysis.

Evaluation of the selected machine learning models
Feature importance
The importance of each variable was ranked in the best 
performing models for death, rehospitalization, and 
MACEs. We applied a map of feature importance to rep-
resent the result.

Model interpretation
The SHAP method is a novel approach to explain various 
black boxes of ML models and has been validated in its 
interpretability performance [23]. Therefore, we applied 
SHAP to provide the interpretation for our prediction 
models with the contributing risk factors that lead to 
death and rehospitalization in patients with CHF. Shap 
packages in the Python 3.7 was used for this analysis.

To facilitate the application of the prediction model, 
Python 3.7 software was used to establish the self-made 
web-based risk calculator for patients with CHF. We 
transformed the models with the best verification to the 
self-made web-based risk calculator.

Results
Characteristics and candidate variables
During the follow-up period, 65 (6.91%) patients died, 
and 268 (28.48%) patients were re-hospitalized due to 
exacerbated HF. Table S4 – S7 summarizes the base-
line characteristics of the patients. Cronbach’s α coeffi-
cients for the PHY, PSY, SOC, and TRE scores, and the 
overall scale were 0.901, 0.929, 0.850, 0.856, and 0.914, 
respectively.

Comparison of modeling approaches
The results of the models constructed by four steps 
and six ML algorithms are shown in Table  1. Taking 
the XGBoost model results as an example, the model 2 
based on four domains of CHF-PRO showed better dis-
crimination than the model 1 which used 16 indica-
tors of general information (AUC: 0.601 (0.598, 0.604) 
vs. 0.519 (0.518,0.522), P < 0.001). The model 3 based 
on four domains of CHF-PRO and general information 
showed better discrimination than the model 1 which 
only used general information (AUC: 0.607(0.595,0.608) 
vs. 0.519(0.518,0.522), P < 0.001). Adjustment of param-
eters (Model 4) further improved the performance of the 
model 3.

Among the six ML approaches, XGBoost had the 
highest predictive performances for all three outcomes, 
which was closely followed by RF. The XGBoost models 
achieved a mean AUC of 0.754 (95% CI: 0.737 to 0.761) 
for death, 0.718 (95% CI: 0.717 to 0.721) for HF rehospi-
talization and 0.670 (95% CI: 0.595 to 0.710) for MACEs. 
Compared with the Logistic model, XGBoost showed 
significant improvement (AUC: 0.754 (0.737,0.761) vs. 
0.742 (0.727,0.745), P < 0.001). In contrast, the NB model 
exhibited an AUC of 0.658 (95% CI: 0.657 to 0.666) and 
0.673 (95% CI: 0.665 to 0.685) for death and HF rehospi-
talization, respectively. The ROC comparison among the 
models is shown in Fig. 2. The Brier scores of XGBoost 
showed a moderate effect among these models, with 
0.174 for death, 0.235 for readmission, and 0.364 for 
MACEs as shown in Table  1. The calibration curves of 
XGBoost models performed well for death and readmis-
sion, but is unsuitable for MACEs, as presented in Figure 
S1.

Evaluation of XGBoost models
Importance of predictors
The importance of the variables was ranked in descend-
ing order for each outcome of the XGBoost models. Fig-
ure 3 contains the importance of predictors measured by 
XGBoost based on general information and CHF-PRO. 
Among these predictors, the domains of CHF-PRO, 
especially the physical domain, played more important 
roles than most of the general information.
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Fig. 3 The weight of predictors in XGBoost models of general information and CHF-PRO. The weight of predictors in XGBoost models of (a) all-cause 
death, (b) HF readmission and (c) MACEs. The number at the end of the horizontal axis of each variable indicates its weight in the model. AF, atrial fibril-
lation; BMI, body mass index; CHD, coronary heart disease; DIA, diabetes; DP, diastolic pressure; FAMILYHISY, family history; HBP, hypertension; HR, heart 
rate; Renal, renal insufficiency; SP, systolic pressure

 

Fig. 2 ROC curve of 3 outcomes. The ROC results of six machine learning models for death, readmission and MACEs. For each outcome, models built by 
general information are shown in model 1, by four domains of CHF-PRO are shown in model 2, by general information and CHF-PRO are shown in model 
3, and by general information and CHF-PRO and adjusted parameters are shown in model 4. FPR, false positive rate; TPR, true positive rate
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Model interpretation
To highlight the clinical utility and translational impact 
of such predictions in chronic care management, we pre-
sented cases of patients with the different end-points.

For the cases shown in Fig. 4, the SHAP values of CHF 
patients with death, re-hospitalization, and MACEs were 
higher than those of patients without end-point events. 
Take Fig. 4A as an example, the model was used to assess 

the death risk of a 74-year-old woman with coronary 
heart disease, diabetes and chronic renal insufficiency. 
The general conditions included low-income, a manual 
worker, and the rural medical insurance. For information 
of CHF-PRO, the score of PHY and PSY were 34 and 64, 
respectively. The total SHAP value f (x) of the patient was 
1.30. The positive effect (red) was greater than the nega-
tive effect (blue), indicated the high risk of death.

Fig. 4 Explanation of the prediction results for specific instances. This figure shows the explanation for patients with the corresponding events (a) and 
patients without the corresponding events (b). The base values are the average values of predictive models; and the f(x)s are the predicted risks. The bars 
in red and blue represent the risk factors and protective factors, respectively; the longer bars represent greater feature importance. AF, atrial fibrillation; 
BMI, body mass index; CHD, coronary heart disease; DIA, diabetes; DP, diastolic pressure; HBP, hypertension; FAMILYHISY, family history; HR, heart rate; 
Renal, renal insufficiency; SP, systolic pressure
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Clinical application of the model
A self-made web-based risk calculator was established to 
facilitate the clinical application. The left side of the cal-
culator is the input window. In the window, the continu-
ous variables of patients were assigned by dragging, and 
categorical variables were dropped-down to select. The 
right side is the result output window. According to the 
results, the two-year risk rates for mortality, rehospital-
ization and the MACEs were 20.16%, 55.22%, and 94.81%.

Insert Fig. 5 here.

Discussion
Evaluation of the prognosis of patients with CHF is 
critical to allow clinicians to select appropriate treat-
ment strategies accurately. In this study, the PRO-driven 
models that we developed and validated showed good 
performance for event prediction in patients with CHF. 
Importantly, these models only require variables can be 
implemented after discharge. Moreover, we introduced 
SHAP approach and established a self-made web-based 
risk calculator, which could predict the prognosis of each 
individual, to explain the black box of ML models. To our 
knowledge, this is one of only a few studies that focus on 
prognosis models in CHF mainly using information gath-
ered through PROs.

This study demonstrated that CHF-PRO had high 
predictive value for mortality and HF readmission in 
patients with CHF. Previous studies have also confirmed 
that PRO is an essential prognosis indicator for HF even 
adjusting for traditional variables [6, 8]. Moreover, PRO 
has also been applied as one of the predictor variables 
to establish the prognosis model of CHF. Different from 
the previous studies, we constructed prognosis models 
primarily based on the information of CHF-PRO and 
obtained a good predictive effect in this study. This is 
consistent with our previous study concerning a readmis-
sion model through logistic regression [24]. The data on 
all the indicators applied in this study could be obtained 
through telephone or self-test, which is expected to pro-
vide a feasible prediction and guidance tool for the out-
of-hospital management of patients with CHF. Among 
the four domains of CHF-PRO, physical status was the 
strongest predictor in this study. In addition, the remain-
ing subscales of CHF-PRO also proved to be important 
for accurate prediction. This supports the findings of 
previous studies [25]. Providing relief for the physical 
symptoms is one of the most important goals of CHF 
treatment, but the psychological status and social factors 
of patients with CHF should also be considered during 
the clinical application.

Fig. 5 Self-made web-based risk calculator for specific instances. On the left side of the system is the variable input module, where continuous variables 
can be assigned by dragging, and categorical variables such as gender can be drop-down to select variable assignment. On the right is the results output 
window. Based on the results, the two-year mortality rate, re-hospitalization rate and MACEs incidence rate of patients that met the input conditions were 
7.81%, 49.23% and 64.8% respectively
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We found that ML methods failed to improve the dis-
crimination ability of logistic regression. A meta-analysis 
that used AUC to measure the performance of models 
from 71 studies confirmed that there was no evidence 
of superior performance of ML over logistic regression 
[26]. However, in this study we found that the parameter 
adjustment significantly improved the accuracy of prob-
ability and discrimination of ML, except that in logistic 
regression. This observation may be attributed to the 
logistic regression being specialized in linear data pro-
cessing, and the possible adjustments to parameters are 
limited. The result reminds that when applying the ML 
methods to the complex data, we could improve the 
model performance through parameter adjustment. 
Among all the ML, the XGBoost algorithm had the high-
est predictive performance in our study. XGBoost is a 
decision-tree-based algorithm and composed of a series 
of base classifiers such as decision tree, k-nearest neigh-
bor, support vector machines, and logistic regression. 
The base classifiers are linearly superimposed to optimize 
the algorithm after they are determined [17]. Studies 
showed the XGBoost model offers strong generalization 
ability, high scalability, and fast computing speed in 
model building [27]. XGBoost typically shows outstand-
ing performance when dealing with complex problems. 
It is suitable for almost all types of complex classification 
problems [28–30] and showed good predictive value in 
many studies on prognosis models [27, 31].

Additionally, the black box of ML was opened by 
interpretability techniques in this study. Through SHAP 
algorithm, we can understand the relationship between 
predictors and outcomes in the XGBoost models. The 
contributions of the variables for each individual could 
be obtained from the result of SHAP, which helps bet-
ter understand the decision-making process of the model 
and facilitate its use in clinical setting [32]. Meanwhile, 
a self-made web-based risk calculator was established in 
this study. Through the calculator, we could easily get the 
incidence rates of outcomes and identify patients with 
the high risk. From these two interpretable algorithms, 
we can identify both high-risk factors and high-risk indi-
viduals, which provided unique tools to better guide clin-
ical decision making.

Despite many advantages of the models, some limita-
tions remain. First, the MACEs in our study only included 
all causes of death and HF readmission that were clear 
during our follow-up process. This led to incomplete 
analysis results. Second, the data of our study were 
mainly from the Shanxi Province of China, which limits 
generalizability and requires further validation in other 
populations. Finally, the clinical data was not included 
in the models of this study. In the following studies, we 
will establish a prognosis model using the data of clinical 
indicators and CHF-PRO in our further studies.

Conclusion
Using variables of CHF-PRO and general information 
that could be obtained outside hospitals, we established 
prognosis models with good performance in patients 
with CHF via XGBoost. The self-made web-based risk 
calculator based on the models could serve as a conve-
nient tool to predict the prognosis for out-of-hospital 
patients without some clinical indicators.
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