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Abstract 

Background In the field of neurorehabilitation, robot‑assisted therapy (RAT) and virtual reality (VR) have so far shown 
promising evidence on multiple motor and functional outcomes. The related effectiveness on patients’ health‑related 
quality of life (HRQoL) has been investigated across neurological populations but still remains unclear. The pre‑
sent study aimed to systematically review the studies investigating the effects of RAT alone and with VR on HRQoL 
in patients with different neurological diseases.

Methods A systematic review of the studies evaluating the impact of RAT alone and combined with VR on HRQoL 
in patients affected by neurological diseases (i.e., stroke, multiple sclerosis, spinal cord injury, Parkinson’s Disease) 
was conducted according to PRISMA guidelines. Electronic searches of PubMed, Web of Science, Cochrane Library, 
CINAHL, Embase, and PsychINFO (2000–2022) were performed. Risk of bias was evaluated through the National 
Institute of Health Quality Assessment Tool. Descriptive data regarding the study design, participants, intervention, 
rehabilitation outcomes, robotic device typology, HRQoL measures, non‑motor factors concurrently investigated, 
and main results were extracted and meta‑synthetized.

Results The searches identified 3025 studies, of which 70 met the inclusion criteria. An overall heterogeneous 
configuration was found regarding the study design adopted, intervention procedures and technological devices 
implemented, rehabilitation outcomes (i.e., related to both upper and lower limb impairment), HRQoL measures 
administered, and main evidence. Most of the studies reported significant effects of both RAT and RAT plus VR 
on patients HRQoL, whether they adopted generic or disease‑specific HRQoL measures. Significant post‑intervention 
within‑group changes were mainly found across neurological populations, while fewer studies reported significant 
between‑group comparisons, and then, mostly in patients with stroke. Longitudinal investigations were also observed 
(up to 36 months), but significant longitudinal effects were exclusively found in patients with stroke or multiple scle‑
rosis. Finally, concurrent evaluations on non‑motor outcomes beside HRQoL included cognitive (i.e., memory, atten‑
tion, executive functions) and psychological (i.e., mood, satisfaction with the treatment, device usability, fear of falling, 
motivation, self‑efficacy, coping, and well‑being) variables.
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Conclusions Despite the heterogeneity observed among the studies included, promising evidence was found 
on the effectiveness of RAT and RAT plus VR on HRQoL. However, further targeted short‑ and long‑term investigations, 
are strongly recommended for specific HRQoL subcomponents and neurological populations, through the adoption 
of defined intervention procedures and disease‑specific assessment methodology.
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Background
Neurological diseases result in a broad spectrum of 
motor, functional, and cognitive impairments. Conse-
quently, they represent the leading cause of disability and 
the second leading cause of death worldwide [1]. Con-
textually to populations growing and ageing, the burden 
of neurological disorders continues to increase globally. 
Therefore, urgent solutions from interdisciplinary reha-
bilitation, innovative approaches and technology-enabled 
smart healthcare strategies are needed [2]. Notably, in 
recent decades, the field of neurorehabilitation has shown 
a growing interest in high technologies, like robotics and 
virtual reality (VR), due to their potential and multipur-
pose application to patients’ recovery pathways [3, 4].

Robot-assisted therapy (RAT), for example, has been 
extensively used in accordance with the principles of 
motor relearning and neuroplasticity with the purpose of 
better maximizing afferent input from peripheral joints 
and providing task-specific stimulation to the central 
nervous system [3]. In targeting both upper and lower 
limb impairment, RAT has so far shown several advan-
tages, including the implementation of repetitive, inten-
sive, and task-oriented rehabilitation exercises through 
a smaller workforce, optimized and customized treat-
ment, and real-time quantitative assessment and moni-
toring of motor disability [5]. For this purpose, different 
robotic devices have been used so far (i.e., exoskeletons, 
end-effectors, soft-robots) [6], reporting promising evi-
dence on diverse rehabilitation outcomes related to both 
upper (e.g., arm range of motion, hand grip and strength, 
dexterity) and lower (e.g., gait, balance, mobility) limb 
impairment. Notably, prior systematic reviews and meta-
analyses have reported informative effects in different 
acute and chronic conditions, including stroke [7, 8], 
traumatic brain injury (TBI) [9], spinal cord injury (SCI) 
[10], multiple sclerosis (MS) [11], and Parkinson’s Disease 
(PD) [12], corroborating the added value of integrating 
robotic technologies in standard rehabilitation programs 
across clinical populations.

Although RAT has been shown to enable effective 
training, deeper investigation to shed light on its broader 
potential is still needed. For instance, further studies have 
highlighted the effects of robotic devices when combined 
with additional technological systems, like VR [13]. VR 
is defined as a system based on computer-simulated 3D 

environments (i.e., virtual environments—VEs) that 
allow the user to interact with virtual objects by the inte-
gration of visual, auditory, and haptic feedback [14]. It is 
acknowledged that three main factors characterize VR, 
namely immersion, sense of presence, and interactivity. 
Immersion refers to the degree to which the VE can pro-
vide multisensory stimuli originating from a high degree 
of matching between the cues generated by the systems 
and the user’s actions. Therefore, immersion in and inter-
activity with VEs affects users’ perception, ultimately 
determining their sense of presence. VR systems can 
be distinguished into fully-immersive, semi-immersive, 
and non-immersive devices, depending on the extent 
to which the interaction with the VE blocks out user’s 
real-world perception. Examples of fully-immersive VR 
devices are tools like head-mounted displays (HMD) 
and cave automatic virtual environment (CAVE). Among 
the semi-immersive devices, large monitors or projec-
tors provide the users moderate immersion, while non-
immersive tools include simpler devices such as PCs or 
tablets. Through the implementation of diverse VEs at 
different levels of immersion VR has so far offered mul-
timodal stimulation and multisensory feedback during 
training. This has not only provided patients with more 
engaging therapy sessions, contributing to enduring 
practice and strengthening performance awareness, but 
it has also enabled deeper stimulation, ultimately induc-
ing cortical and subcortical synaptic-level changes that 
are essential for motor relearning [15].

Nevertheless, it must be acknowledged that, although 
robotic and VR devices have so far shared high techno-
logical impact, they profoundly differ from each other 
when considering technical and interactivity issues. 
Therefore, the applicability of these technological devices 
and their efficacy still need to be better understood, espe-
cially when they are implemented independently or in 
combination and when they are used with specific neuro-
logical populations.

Overall, it must be noted that the introduction of RAT 
alone or in combination with VR has mainly provided 
more robust conclusions when taking into account out-
comes like motor improvement and functional status 
change [5, 16]. However, the broader effectiveness of this 
innovative recovery procedure, including its long-term 
impact, still needs to be more deeply investigated and 
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confirmed. Health-related quality of life (HRQoL) has 
so far been considered as an indicator of therapy effec-
tiveness, since it facilitates observing patients’ perceived 
improvement in terms of their physical and mental state, 
especially when taking into consideration patients’ real-
life environments and health domains. Nevertheless, 
prior studies have predominantly explored HRQoL as an 
additional outcome, with the main objective to extend 
the investigation of RAT efficacy to the secondary effects 
resulting from motor improvement. Similarly, concurrent 
investigations have been carried out to include cogni-
tive and psychosocial outcomes. For example, alongside 
motor recovery, recent studies have highlighted positive 
changes on depression and anxiety symptoms, increased 
perceived well-being, improved coping strategies, and 
enhanced executive function performance [13, 17–19].

Following this line, the adoption of a multidimensional 
approach in the field of neurorehabilitation, where mul-
tiple patient’s health-related domains and their comple-
mentarity are considered, still remains an open challenge 
[20]. Accordingly, it is of paramount concern to provide 
clearer and wider overview of RAT effects, in particular 
targeting a wide range of neurological diseases and disor-
ders and by giving more centrality to patient’s non-motor 
characteristics is of paramount concern. This would 
not only help future clinical trials to better orient their 
investigation on disease-specific outcomes, but it would 
also better address the effects of RAT beyond motor 
improvement.

For this purpose, a systematic review was conducted 
on studies investigating the impact of RAT, alone or com-
bined with VR, on HRQoL in patients affected by neu-
rological diseases. Specifically, the present study aimed 
at describing the evidence on short- and long-term post-
intervention changes regarding HRQoL, including how 
this outcome was evaluated across neurological popula-
tions. In addition, a secondary systematic synthesis was 
conducted on the non-motor outcomes (e.g., cognitive, 
psychological) that were investigated concurrently.

Methods
A preliminary check on registered or ongoing simi-
lar systematic reviews was conducted on the Inter-
national Prospective Register of Systematic Review 
(PROSPERO) platform. No results were provided and, 
thus, the systematic review protocol was registered (ref. 
CRD42022367228).

The current study belongs to a broader project called 
PHTinRehab Study (Perception of High Technology in 
Rehabilitation: a prospective real-life Study on usability, 
effectiveness, and health-related quality of life), approved 
by the Ethics Committee of the Clinical Scientific 

Institutes Maugeri IRCCS (February 2021, protocol n. 
2517CE).

Search strategy and studies selection
The preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines were followed 
[21]. Preliminary electronic searches of PubMed, Web 
of Science, Cochrane Library, CINAHL, Embase, and 
PsychINFO were performed on 11th January 2022 by 
applying the following search query for all databases: 
(rehabilitation) AND ((robot*) OR (virtual reality)) AND 
(quality of life). Even though the present study aimed 
to retrieve records specifically focused on neuromotor 
rehabilitation, the general term ‘rehabilitation’ was pre-
ferred to ensure full retrieval despite its applicability to 
different clinical fields (e.g., cardiac-pulmonary rehabili-
tation, cognitive rehabilitation). Therefore, the identifica-
tion of the eligible studies was checked throughout the 
records screening procedure. Furthermore, to optimize 
studies identification according to the eligibility criteria 
(Table  1), additional mutual filters (i.e., year of publica-
tion timespan, article language) were defined consist-
ently for each electronic database. During the systematic 
review process, a reference management and bibliogra-
phy-creating software (EndNote Web) was implemented.

Risk of bias assessment
The National Institutes of Health (NIH) Quality Assess-
ment Tool for Controlled Intervention Studies and for 
the Before–After (Pre–Post) Studies With No Control 
Group were used to evaluate the methodological qual-
ity of the records included [22]. The first one comprised 
14 items assessing the quality of randomization, treat-
ment allocation, blinding, similarity of study groups at 
baseline, dropout management, adherence to treatment, 
outcome measures validity, power calculation, hypoth-
esis testing, and intention-to-treat analysis. The second 

Table 1 Eligibility criteria

Inclusion criteria

HRQoL evaluation following RAT or RAT plus VR‑based neurorehabilita‑
tion

Adult patients affected by neurological diseases

Quantitative and qualitative studies

Original research published in English in a peer‑reviewed journal

Year of publication timespan: 2000–2021

Exclusion criteria

Other fields of rehabilitation (e.g., VR‑based cognitive rehabilitation)

Healthy participants or patients affected by psychiatric disorders

Conference papers, proceedings, study protocols, reviews, commentaries, 
editorials, position papers
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checklist comprised 12 items evaluating the quality of 
the study question, eligibility criteria, sample representa-
tiveness, intervention description, outcome measures 
validity, blinding, follow-up rate, and statistical analyses. 
For both checklists, each item was rated as yes, no, or 
not reported, assigning one point for every ‘yes’ answer. 
Based on this evaluation, studies were classified accord-
ing to quality rating: ‘Poor’, ‘Fair’, or ‘Good’ (details on 
the NIH Quality Assessment questions and the scoring 
procedures can be found in the supplementary mate-
rial). The studies were evaluated by three researchers 
(F.Z., N.F., R.A.) working independently. Any discrepan-
cies were discussed until a consensus was reached. The 
studies evaluated as having a higher risk of bias were not 
excluded, but their quality was considered in the inter-
pretation of the results, as appropriate [23].

Data extraction and synthesis
Following eligibility criteria discussion and agreement 
of all authors, progressive exclusion of the non-eligible 
records was performed starting from the title, then the 
abstract, and finally the full-text. Two authors (F.Z. and 
N.F.) completed the entire review process working inde-
pendently. Disagreements were solved through peri-
odically planned discussions involving all authors. Each 
identified article was then screened multiple times until 
sufficient understanding of the study aim, design, and 
outcomes was obtained. Of the included studies, a wide 
range of data was then extracted and reported in a struc-
tured table. Due to its extent, it was provided as supple-
mentary material. The table includes: author(s), year of 
publication, nation where the study was conducted, the 
nation’s Human Development Index (HDI) [24] and the 
related rank, professional specialty field of the research 
group, study design (including if studies were multicen-
tric, pilot, funded, if they included any follow-up evalu-
ations and related duration), patients’ characteristics 
(i.e., disease, type of hospitalization, sample size, mean 
age, ethnicity, any prior experience using technological 
devices), study purpose, rehabilitation outcomes, com-
mercial name of technological devices, robotic device 
typology (i.e., exoskeleton, end-effector, soft-robot), level 
of VR immersion (i.e., non-immersive, semi-immersive, 
fully-immersive), intervention characteristics (i.e., dura-
tion in weeks, total number of sessions, session duration 
in minutes), HRQoL, psychological variables, motor and 
functional outcome measures used, and main results. 
Descriptive statistics were calculated on the main char-
acteristics of the studies, whereas the main results were 
meta-synthetized through narrative analysis. No specific 
statistical software or tool was implemented for data 
synthesis.

Results
Flow of studies through the review
From the initial electronic search, a total of 4640 records 
were retrieved. After duplicates were identified and 
removed, 3025 studies underwent the screening proce-
dure. A total of 2832 records were excluded by title and 
abstract screening. The remaining 193 were screened 
by full-text. Of these, 127 met all the inclusion criteria. 
Additional records were not identified by further hand 
searching. Figure 1 shows the flow diagram of the stud-
ies selected, including the reasons for exclusion. Most 
of the excluded records were considered as off-topic 
(n = 1538). These were not strictly focused on RAT, but 
belonged to different fields of rehabilitation (e.g., tradi-
tional treatment exclusively, cognitive rehabilitation). 
Others specifically involved non-adult patients (n = 70), 
whereas other records (n = 1276) were identified as non-
original research (e.g., study protocols, proceedings). Of 
the included studies, a total of 57 reported results on 
the effects of VR-based rehabilitation exclusively. The 
remaining provided evidence on RAT alone (n = 52) or 
in combination with VR (n = 18). The present work spe-
cifically describes the results from the implementation of 
RAT alone or plus VR. Thus, the final number of stud-
ies included in this systematic review is 70. The results on 
the effects of VR will be presented in a separate work.

Risk of bias
Of the studies evaluated with the Controlled Interven-
tion Studies checklist (n = 48), most (n = 28, 58.3%) were 
classified as having ‘fair’ methodological quality. 33.4% 
of the studies met most of the criteria and were evalu-
ated as ‘good’ (n = 16), whereas only 4 studies (8.3%) were 
labelled as ‘poor’. The remaining 22 studies were assessed 
with the Before-After (Pre-Post) Studies With No Con-
trol Group scale. The majority of these (n = 16, 72.7%) 
had ‘fair’ methodological quality, while four (18.2%) 
were classified as ‘good’ and the final two (9.1%) as ‘poor’ 
quality.

Overall, only 11.4% of the included studies (n = 70), 
were therefore evaluated as having a potentially high 
risk of bias. Details on the evaluation for each study are 
reported as supplementary material.

Characteristics of the included studies
A full report of the data extracted from the included 
studies is presented in a structured synoptic table (Addi-
tional file 1: Append ix 1) [13, 25–93].

Design
The main characteristics regarding the design of the 
included studies are summarised in Tables 2 and 3. Most 
(65.7%) were published in the last five years and were 
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conducted in European countries (55.7%). Data extracted 
on the research groups’ specialty fields denote a multidis-
ciplinary contribution to the investigation on the current 
topic, with the majority of the research groups having 
their main expertise in rehabilitation medicine (92.6%), 
neurology (41.4%), engineering (25.7%), neuroscience 
(14.3%), and psychology (12.9%). Most of the studies 
(62.9%) were randomised controlled trials (RCTs), fol-
lowed by pre-post clinical trials without a control group 
(31.4%) and quasi-experimental studies (5.7%). More 
than half of the studies included follow-up evaluations 

(55.7%), were single-centered (75.7%), and were funded 
(61.4%). In conclusion, almost one study out of three was 
a pilot (28.6%).

Participants
Table  4 shows the main characteristics of participants. 
The sample size of the included studies ranged from 3 
to 224 patients (total of all studies, n = 2956). The 37.1% 
of the studies included fewer than 30 participants and, 
according to risk of bias assessment, only 17.2% reported 
that sample size was sufficiently large to detect results 

Fig. 1 Flow chart of the review process
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with appropriate statistical power. Most of the partici-
pants included were outpatients (44.3%), suffered from 
stroke (54.3%), MS (21.4%), SCI (15.7%), or PD (15.7%). 
Finally, only four studies reported participants’ ethnicity 
[54, 58–60].

Intervention
Robotic and VR devices typology, including the main 
characteristics of the interventions are summarized in 
Table 5. Overall, 74.3% of the studies implemented RAT 
exclusively, while the remaining 25.7% coupled RAT 
with VR systems. Of the latter, all used non-immersive 
VR devices, except for one study that also implemented 
semi-immersive VE [61]. In particular, the studies on 

RAT mainly implemented exoskeletal devices (59.6%), 
and particularly targeted rehabilitation outcomes related 
to lower limb functioning (71.2%), such as gait, balance, 
mobility, and muscle strength. The studies investigat-
ing the effects of RAT plus VR implemented exoskeletal 
or end-effector robotic devices (44.4%), and mainly pro-
vided rehabilitation exercises to target upper limb out-
comes (72.2%), including manual dexterity, reaching and 
grasping abilities, shoulder pain, and spasticity. Regard-
ing intervention duration, RAT alone lasted longer on 
average when compared to RAT plus VR in terms of 
overall therapy duration (in weeks), total number of ses-
sions, and session duration (in minutes).

HRQoL outcome measures
A summary of the HRQoL measures used in the included 
studies is reported in Fig.  2. Notably, both generic and 
disease-specific HRQoL measures were administered. 
Most of the studies (55.7%) implemented disease-specific 
scales. Only three studies [81, 87, 89] provided a mixed 
evaluation. Different factors explaining HRQoL were 
investigated. Overall, these were associated with differ-
ent health-related domains, including perceived physical 
functioning, emotional state, self-care, mood, pain, social 
participation, autonomy in the ADLs, and cognition.

Table 2 Main characteristics of the included studies (n = 70)

a Europe (i.e., Denmark, Germany, Italy, Netherlands, Norway, Romania, Spain, Sweden, Switzerland, Turkey, United Kingdom), America (i.e., Canada, United States of 
America), Asia (i.e., China, India, Israel, Japan, South Korea, Taiwan), Oceania (Australia)
b Non-cumulative percentages
c Biomedical, Mechanical, Computer Engineering

Year of publication n (%) Nationa n (%b) Research group specialty field n (%b)

2016–2021 46 (65.7) Europe 39 (55.7) Rehabilitation Medicine 65 (92.6)

2011–2015 18 (25.7) America 21 (30.0) Neurology 29 (41.4)

2000–2010 6 (8.6) Asia 17 (24.3) Engineeringc 18 (25.7)

Oceania 2 (2.9) Neuroscience 10 (14.3)

Occupational Physiatry 9 (12.9)

Psychology 9 (12.9)

Physiology 6 (8.6)

Geriatrics and orthopedics 5 (7.1)

Public Health 3 (4.3)

Table 3 Study design characteristics of the included studies (n = 70)

a Follow-up range: 1–36 months

Study design n (%) Follow-up n (%) Funding n (%) Multicentric n (%) Pilot Study n (%)

RCTs 44 (62.9) Yesa 39 (55.7) Yes 43 (61.4) Yes 17 (24.3) Yes 20 (28.6)

Pre‑post Clinical Trial 
(no control group)

22 (31.4) No 31 (42.3) No 27 (38.6) No 53 (75.7) No 50 (71.4)

Non‑RCT 4 (5.7)

Table 4 Participants’ characteristics in the included studies 
(n = 70)

a Hereditary Spastic Paraplegia, Neuromuscular diseases, Orthopedics

Patients n (%) Disease n (%)

Outpatients 31 (44.3) Stroke 38 (54.3)

Inpatients 15 (21.4) Multiple Sclerosis 15 (21.4)

Both 3 (4.3) Spinal Cord Injury 11 (15.7)

Not defined 21 (30.0) Parkinson’s Disease 3 (4.3)

Othera 3 (4.3)
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HRQoL changes in RAT 
More than half of the studies (63.4%) reported significant 
effects on HRQoL following RAT alone. Of these, sig-
nificant post-intervention between-groups changes were 
mostly found in stroke patients [32–34, 44, 46, 53, 65, 

93], and in only one study in patients with PD [59]. Exclu-
sive significant within-groups effects were found across 
clinical populations, namely stroke [42, 43, 45, 47, 54, 56, 
58, 60, 84, 86, 87], MS [67, 72, 76, 82, 88, 89], SCI [30, 31, 
39, 73], PD [68], and other neurological diseases [27, 63]. 

Table 5 Main characteristics of the technological devices and of the intervention in RAT (n = 52) and RAT plus VR (n = 18) studies

a Non-cumulative percentage

RAT RAT plus VR Overall

Robot typology, n (%a)

 Exoskeleton 31 (59.6) 8 (44.4) 39 (55.7)

 End‑effector 21 (40.4) 8 (44.4) 29 (41.4)

 Soft‑robotics – 3 (16.6) 3 (4.3)

Targeted extremities, n (%)

 Upper Limbs 15 (28.8) 13 (72.2) 28 (40.0)

 Lower Limbs 37 (71.2) 4 (22.2) 41 (58.6)

 Both – 1 (5.6) 1 (1.4)

Intervention, mean ± SD (range)

 Overall duration (weeks) 6.5 ± 3.7 (2–24) 4.8 ± 1.5 (3–8) 6.0 ± 3.3 (2–24)

 n. of sessions 22.0 ± 10.2 (6–60) 19.6 ± 8.9 (8–40) 21.4 ± 9.9 (6–60)

 Session duration (min) 60.1 ± 30.9 (20–180) 55.7 ± 39.7 (30–180) 58.9 ± 33.4 (20–180)

Fig. 2 Summary of the generic and disease‑specific HRQoL measures and their subcomponents investigated in the studies included. BLCS Bladder 
Control Scale, BWCS Bowel Control Scale, EQ-5D EuroQoL‑5 Dimensions, FSS Fatigue Severity Scale, IVIS Impact of Visual Impairment Scale, MFIS 
Modified Fatigue Impact Scale, MHI Mental Health Inventory, MSIS-29 Multiple Sclerosis Impact Scale, MSQLI Multiple Sclerosis Quality Of Life 
Inventory, MSQOL-54 Multiple Sclerosis Quality Of Life‑54, MSSS Modified Social Support Survey, Neuro-QoL Quality of life in Neurological Conditions, 
NHP Nottingham Health Profile, PDQ Perceived Deficits Questionnaire, PDQ-39 Parkinson’s Disease questionnaire‑39, PES Pain Effects Scale, PROMIS 
The Patient‑Reported Outcomes Measurement Information Systems, RAND-36 Research and Development Corporation‑36, SCI-QOL Spinal Cord 
Injury‑Quality of Life Independence, SCIM-III Spinal Cord Independence Measure‑Version 3, SF-8 SF‑12, SF‑36, Short Form Health Survey, SIS Stroke 
Impact Scale, SS-QOL Stroke Specific Quality Of Life Scale, SSS Sexual Satisfaction Scale, SWLS Satisfaction With Life Scale
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The 51.9% of the studies included follow-up evaluations. 
Of these, only two studies [44, 53] (both on patients with 
stroke) found significant between-groups effects over 
time (up to 3  months), while other studies on patients 
with stroke [47, 56, 60, 84, 86, 87] or MS [67, 89] showed 
only significant within-groups long-term effects (up to 
36  months). Notably, most of the studies that reported 
significant effects implemented disease-specific HRQoL 
measures (60.6%). Similarly, 68.4% of the studies report-
ing no significant changes used generic HRQoL scales.

HRQoL changes in RAT plus VR
The majority (66.7%) of the studies combining RAT 
with VR reported significant post-treatment changes on 
HRQoL. Significant between-groups effects emerged in 
patients with stroke only [13, 70, 91], while exclusive sig-
nificant within-groups changes were observed in patients 
with stroke [49, 57, 66, 69, 79, 83] and MS [61, 64, 85]. 
No studies on the effects of RAT plus VR in patients with 
PD were retrieved. Moreover, only 33.3% of the studies 
on RAT plus VR included longitudinal evaluations. Of 
these, one study on patients with stroke [70] found signif-
icant between-groups effects over one month after inter-
vention, while other studies on patients with stroke [57, 
66, 69, 79] or MS [64] showed significant within-groups 
improvements up to 2 months after treatment. Similarly 
to studies on RAT alone, most (83.3%) of the significant 
effects were found when disease-specific HRQoL meas-
urements were adopted.

Non-motor outcomes concurrently investigated
Of the included studies, 32.9% conducted a psychologi-
cal, cognitive and/or formative evaluation. Five studies 
investigated anxiety and depression symptoms [27, 63, 
67, 68, 74], while ten assessed depression symptomatol-
ogy only [13, 33, 41, 50, 54, 55, 58, 81, 82]. Seven studies 
conducted a cognitive assessment, especially concerning 
memory, attention, and executive functions abilities [13, 
33, 34, 64, 68, 77, 83]. Other studies investigated patient 
satisfaction with the treatment [73, 77], perceived tech-
nological device usability [75], fear of falling [51], moti-
vation and self-efficacy [71], coping abilities [33], and 
perceived well-being [33, 88].

Discussion
A systematic review of the studies investigating the 
effects of RAT alone and RAT plus VR on HRQoL in 
patients with neurological diseases was conducted. 
From each study, a wide range of data were extracted, 
including the methodology adopted to measure HRQoL 
across neurological populations and a summary of the 
psychological outcomes concurrently evaluated. At the 
end of the review process, a total of 70 studies were 

included and synthetized. Of these, 52 studies were 
on RAT exclusively, while the remaining 18 examined 
HRQoL changes after implementing VR systems, too.

Over the last two decades, the number of studies 
including HRQoL as a rehabilitation outcome has been 
increasing sensibly. Indeed, most of the included studies 
date back to within the last five years, denoting a rapid 
and recent growing interest in investigating HRQoL 
and its subcomponents along motor outcomes. This 
reflected the composition of the research groups and 
their specialty field. Although it was observed that the 
majority had expertise in rehabilitation medicine and 
neurology, authors’ contributions came from different 
fields, such as engineering, neuroscience, occupational 
physiatry, physiology, geriatrics, public health, and psy-
chology. The increase found in the number of studies 
and the heterogeneity of expertise area may be attribut-
able to the increasing necessity and interest in adopting 
multidisciplinary approaches to study neurorehabilita-
tion processes, especially when multiple outcomes that 
are not strictly related to motor improvement are con-
sidered and technological and innovative procedures 
are implemented [20]. Besides, the introduction of 
high technologies has however raised cost-effectiveness 
issues, particularly when referring to robotic devices. 
Prior evidence regarding the economic evaluations of 
technology-based rehabilitation interventions has so 
far drawn controversial conclusions within different 
neurological populations [94, 95]. Certainly, the imple-
mentation of robotics in rehabilitation programs entails 
higher costs when compared to more standard and con-
ventional treatments, leading research on this topic to 
require financial support, especially when the feasibility 
of the technological devices is tested. This may explain 
why most of the included studies were funded and one 
study out of three was a pilot. In support of this, it was 
also observed that most of the studies implementing 
also VR received funding and provided preliminary evi-
dence of technology deployment.

Further heterogeneity was also found in terms of 
patients’ characteristics, intervention, and robotic typol-
ogies used. Most of the patients had stroke, while others 
presented MS or SCI. Stroke prevalence is not surprising 
considering the nowadays global estimation of cases (70% 
over 64  years) with an increasing burden in both sexes 
[96, 97]. Regarding MS and SCI, it is widely recognized 
that both pathologies result in irreversible motor dys-
function often highly correlated to progressive disability 
and gait impairment [98, 99]. Accordingly, the number 
of cases observed in this systematic review reflects the 
clinical potential of RAT that has been so far exploited 
to target lower limb deficits (e.g., robot-assisted gait 
training—RAGT).
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Furthermore, sample size varied extensively across 
the studies included. Although a considerable number 
of patients was included in this systematic review, more 
than one study out of three involved fewer than 30 par-
ticipants leading to statistically underpowered results in 
most cases. Even though it must be noted that most of 
these studies were pilots, future research involving larger 
sample size to obtain more robust results is strongly 
recommended.

Similarly, it should be also highlighted that only four 
studies have reported patients’ ethnicity. As recom-
mended by prior studies, future research is encouraged to 
report participants’ ethnic diversity for different reasons, 
including the possibility to provide increased results gen-
eralizability [100]. Lastly, informative findings regarding 
the intervention and the technology type implemented 
were observed. Overall, the studies varied considerably in 
the global intervention duration, total number of therapy 
sessions and individual session duration. Notably, dif-
ferences in intervention procedures between RAT and 
RAT plus VR were found. On average, the rehabilitation 
programs coupling RAT to VR were shorter, suggesting 
that the concurrent implementation of VR systems may 
add complexity to recovery procedures, ultimately raising 
feasibility and usability issues [101]. In support of this, it 
was observed that all the studies on RAT plus VR used 
non-immersive VEs (e.g., PC monitors). It is acknowl-
edged that the implementation of VR devices provid-
ing more immersive VEs was associated with a stronger 
likelihood for the patient to experience adverse effects 
like nausea, dizziness, or oculomotor disturbances, 
that in turn may represent factors potentially affecting 
RAT delivery and efficacy, as well as patients’ treatment 
acceptability. Nevertheless, although immersion is not 
strictly related to sense of presence and stronger engage-
ment, it is recognized that it can lead patients to experi-
ence positive emotions and increased motivation during 
the treatment [102]. This would contribute to enhancing 
patients’ adherence to the therapy, ultimately optimiz-
ing its efficacy. Accordingly, future studies should more 
deeply explore the role of VR and its key characteristics 
(i.e., interactivity, immersion, and sense of presence) 
when combined with robotic devices and their effects on 
diverse non-motor outcomes, including HRQoL.

Mixed results on HRQoL were found. Regardless of 
the study design adopted, most of the studies reported 
significant effects following RAT alone or RAT plus VR. 
In both cases, the majority provided significant within-
group improvements, and a lower percentage of stud-
ies reported significant post-treatment comparisons 
with a control group. Informative findings were then 
observed when examining HRQoL results with reference 
to the neurological population investigated, assessment 

methodology adopted, and study design. Although most 
of the studies provided significant evidence, both inter-
vention typologies provided between-group effects 
in patients with stroke mainly. Evidence on the other 
pathologies (i.e., MS, SCI, and PD) were found with no 
significant differences to a control group. Moreover, 
of the studies coupling RAT to VR, only one involved 
patients affected by SCI and none on patients with PD 
were retrieved. Therefore, not only more studies involv-
ing larger sample sizes that allow study group compari-
sons are needed, but future research on this topic should 
also extend the investigation to neurological populations 
that have been understudied so far. Deeper observations 
of RAT effects on HRQoL are also needed to point out 
possible explanations about non-significant results. It 
must be noted that one study out of three found no signif-
icant effects in any neurological population. One possible 
explanation may be related to the methodology adopted 
to assess HRQoL. A large number of tools to assess a 
wide range of health-related components was retrieved 
and grouped into two main categories, namely generic 
and disease-specific HRQoL measures. The comparison 
between these two categories has been extensively dis-
cussed [103]. Although generic measures are designed 
to be broadly applied across different types and severity 
of diseases, they may generate contradictory evidence in 
content validity resulting in lower responsiveness in cer-
tain clinical populations. Disease-specific measures, on 
the other hand, might be more sensitive and representa-
tive when investigating HRQoL outcomes in specific 
clinical subgroups. In the present systematic review, it 
was observed that most of the studies that provided non-
significant results adopted generic tools, whereas most of 
the significant effects were detected when disease-spe-
cific scales were implemented. Future studies should take 
this finding into account and, for example, adopt both 
measure types when assessing HRQoL to point out any 
internal consistency issues and advance more generaliz-
able conclusions. Lastly, concerning the study design, it 
was noted that the studies reporting significant changes 
at follow-up evaluations (up to 36  months after treat-
ment) were mainly on patients with stroke and, again, 
adopted a disease-specific HRQoL assessment approach. 
This supports the importance of the choice of HRQoL 
measures when targeting effects over time and, moreo-
ver, the necessity to extend longitudinal investigations to 
other neurological populations.

One last finding of this systematic review regards the 
psychological and cognitive outcomes investigated along 
HRQoL. Of these, only which variables and the related 
adopted measures were presented to give more cen-
trality to the results on HRQoL. From data synthesis, it 
emerged that psychological outcomes such as anxiety 
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and depression symptoms, coping abilities, motivation, 
or perceived device usability were mainly investigated in 
studies on RAT alone. Interestingly, patients’ cognitive 
aspects were mainly evaluated when VR was also applied 
to the treatment. This distribution is not surprising if we 
consider the impact that the exposure to VEs may have 
particularly on patients’ cognitive status given the poten-
tial of VR to provide multimodal stimulation and multi-
sensory feedbacks during therapy. Nevertheless, future 
research should consider comprehensive evaluations 
of patients’ health domains in order to better under-
stand their inter-relationships regardless of the type of 
intervention. Furthermore, future works are needed 
to better deepen also the relationship between the psy-
chological and cognitive variables and specific HRQoL 
subcomponents.

Limitations and future steps
Overall, the studies included in this systematic review 
made it possible to describe informative and promising 
evidence on robotic and VR devices application to neu-
rorehabilitation and their effects on patients’ HRQoL. 
However, some limitations were identified too. The het-
erogeneity observed among the studies concerning the 
design, participants’ characteristics, intervention (i.e., 
rehabilitation outcomes, robotic device typology, dura-
tion), and HRQoL measures adopted made it especially 
difficult to draw robust conclusions. Moreover, this het-
erogeneity prevented advancing definitive interpreta-
tions on the added value of integrating VR to RAT. More 
studies combining the two technological devices are 
needed in order to provide more generalisable insights. 
Differently, the present review shed light on understud-
ied neurological populations and, moreover, it allowed 
to note that, in the field of neurorehabilitation, HRQoL 
was investigated taking into account multiple and differ-
ent health domains, ranging from motor and functional 
status to psychosocial related factors. The complexity 
of HRQoL as a construct, along with the other charac-
teristics of the included studies, made the overall stud-
ies configuration too mixed to identify subgroups or 
subsets and, therefore, to perform meta-analyses as 
well. Accordingly, future research aiming at studying 
HRQoL improvements should take this heterogeneity 
into account and provide deeper investigations on spe-
cific HRQoL subcomponents and neurological popula-
tions adopting precise intervention procedures and an 
adequate assessment methodology. Following this line, 
multidisciplinary approaches are strongly recommended 
to optimally address the complexity of HRQoL and to 
extend knowledge on RAT effectiveness in patients’ eve-
ryday life.
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