Skip to main content

Table 3 Results of factor analysis

From: Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ) in mainland China: an investigation of reliability, validity, and responsiveness

Factor Initial eigenvalues Rotation sums of squared loadings
Eigenvalue Contribution rate (%) Cumulative contribution rate (%) Eigenvalue Contribution rate (%) Cumulative contribution rate (%)
1 7.671 31.963 31.963 4.653 19.387 19.387
2 2.422 10.091 42.055 4.522 18.841 38.228
3 1.923 8.014 50.069 2.277 9.487 47.715
4 1.720 7.168 57.236 1.953 8.136 55.851
5 1.249 5.205 62.441 1.582 6.590 62.441
6 1.080 4.501 66.942    
7 0.947 3.944 70.886    
8 0.876 3.650 74.536    
9 0.763 3.179 77.715    
10 0.694 2.892 80.607    
11 0.654 2.727 83.334    
12 0.594 2.475 85.809    
13 0.506 2.108 87.917    
14 0.410 1.707 89.624    
15 0.364 1.515 91.139    
16 0.346 1.444 92.582    
17 0.317 1.320 93.902    
18 0.298 1.241 95.143    
19 0.270 1.124 96.267    
20 0.254 1.059 97.326    
21 0.204 0.848 98.174    
22 0.187 0.778 98.952    
23 0.134 0.558 99.509    
24 0.118 0.491 100.000    
  1. Eigenvalues are shown in italics, which represent the total amount of variance that can be explained by a given principal component. In factor analysis, only factors with eigenvalues of 1.00 or higher are traditionally considered worth analyzing, because eigenvalue above 1 means this factor can explain more than 1 variance