Skip to main content

Table 1 Specifications of the four models (simple linear regression and RE)

From: Use of Bayesian methods to model the SF-6D health state preference based data

Model

Conditional Distribution

Specification of the mean

M1- Linear regression

Yi~N(μi, σ2)

εi~N(0, σ2)

μi = β0 + Parai

M2- Random effect

Yij~N(μij, σ2)

\( {u}_i\sim N\left(0,{\upsigma}_u^2\right) \)

\( {e}_{ij}\sim N\left(0,{\upsigma}_e^2\right) \)

μij = β0 + Paraij + ui

M3- Random effect: intercept forced to unity

Yij~N(μij, σ2)

\( {u}_i\sim N\left(0,{\upsigma}_u^2\right) \)

\( {e}_{ij}\sim N\left(0,{\upsigma}_e^2\right) \)

μij = Paraij + ui

M4- Random effect: intercept forced to unity and inclusion of most

Yij~N(μij, σ2)

\( {u}_i\sim N\left(0,{\upsigma}_u^2\right) \)

\( {e}_{ij}\sim N\left(0,{\upsigma}_e^2\right) \)

μij = Paraij + βmostmostij + ui

  1. Paraij = βPF2PF2ij + βPF3PF3ij + βPF4PF4ij + βPF5PF5ij + βPF6PF6ij + βRL2RL2ij + βRL3RL3ij + βRL4RL4ij + βSF2SF2ij + βSF3SF3ij + βSF4SF4ij + βSF5SF5ij + βPAIN2PAIN2ij + βPAIN3PAIN3ij + βPAIN4PAIN4ij + βPAIN5PAIN5ij + βPAIN6PAIN6ij + βMH2MH2ij + βMH3MH3ij + βMH4MH4ij + βMH5MH5ij + βVIT2VIT2ij + βVIT3VIT3ij + βVIT4VIT4ij + βVIT5VIT5ij