Skip to main content

Table 3 Preference-Based Scores for Asthma and Stroke Samples using SF-36 Algorithms

From: Are decisions using cost-utility analyses robust to choice of SF-36/SF-12 preference-based algorithm?

  Baseline Assessment (Ti) Final Assessment (Tf) Difference (Tf-Ti) 95% CI
Asthma (n = 220) Mean (SD) Mean (SD) Mean (SD) Lower Upper
   Brazier (SF-36, SG) 0.694 (0.101) 0.757 (0.113) 0.063 (0.117) 0.048 0.082
   Brazier (SF-12, SG) 0.724 (0.116) 0.789 (0.119) 0.065 (0.125) 0.047 0.078
   Fryback (SF-36, QWB) 0.655 (0.063) 0.721 (0.072) 0.066 (0.070) 0.057 0.075
   Nichol (SF-36, HUI2) 0.765 (0.123) 0.840 (0.118) 0.075 (0.114) 0.060 0.090
   Shmueli (SF-36, VAS) 0.683 (0.124) 0.766 (0.130) 0.084 (0.111) 0.069 0.098
   Lundberg (SF-12, VAS) 0.667 (0.113) 0.759 (0.119) 0.091 (0.117) 0.076 0.107
   Franks (SF-12, EQ-5D) 0.699 (0.181) 0.814 (0.152) 0.115 (0.169) 0.093 0.138
   Franks (SF-12, HUI3) 0.643 (0.170) 0.764 (0.173) 0.121 (0.176) 0.098 0.144
   Franks (SF-12, EQ-5D, MEPS) 0.667 (0.174) 0.797 (0.163) 0.129 (0.167) 0.107 0.151
   Lawrence (SF-12, EQ-5D) 0.667 (0.158) 0.798 (0.159) 0.130 (0.159) 0.109 0.152
Stroke (n = 81)         
   Shmueli (SF-36, VAS) 0.602 (0.115) 0.656 (0.155) 0.055 (0.124) 0.027 0.082
   Fryback (SF-36, QWB) 0.548 (0.060) 0.616 (0.100) 0.069 (0.094) 0.048 0.089
   Lundberg (SF-12, VAS) 0.512 (0.108) 0.592 (0.155) 0.080 (0.156) 0.045 0.114
   Brazier (SF-12, SG) 0.609 (0.099) 0.696 (0.145) 0.087 (0.152) 0.054 0.121
   Nichol (SF-36, HUI2) 0.656 (0.110) 0.745 (0.147) 0.089 (0.143) 0.058 0.121
   Brazier (SF-36, SG) 0.552 (0.087) 0.669 (0.139) 0.116 (0.137) 0.086 0.147
   Franks (SF-12, HUI3) 0.482 (0.150) 0.615 (0.200) 0.133 (0.200) 0.089 0.177
   Lawrence (SF-12, EQ-5D) 0.491 (0.132) 0.626 (0.204) 0.134 (0.194) 0.091 0.177
   Franks (SF-12, EQ-5D) 0.478 (0.199) 0.618 (0.232) 0.139 (0.233) 0.088 0.191
   Franks (SF-12, EQ-5D, MEPS) 0.472 (0.165) 0.615 (0.219) 0.143 (0.215) 0.096 0.191
  1. p-value < 0.001, based on t-test for dependent samples
  2. NB: algorithms are ordered from smallest to largest difference score for each condition